
JiST: Embedding Simulation Time into a Virtual Machine

Rimon Barr
barr@cs.cornell.edu

Zygmunt J. Haas
haas@ee.cornell.edu

Robbert van Renesse
rvr@cs.cornell.edu

Computer Science and Electrical Engineering
Cornell University, Ithaca NY 14853

ABSTRACT
Since progress in many avenues of science depends heavily
on simulated results, discrete event simulators have been
the subject of much research into their efficient design and
execution. This paper introduces JiST, a Java-based sim-
ulation framework that executes discrete event simulations
both efficiently and transparently. Our system differs from
existing work in that it embeds simulation time semantics
into the Java execution model, but does so without invent-
ing a new language, without requiring a specialized compiler
and without utilizing a custom runtime. The result is a flex-
ible simulation environment that allows sequential simula-
tion execution and also transparently supports both paral-
lel and optimistic execution with automatic checkpointing
and rollback. The JiST approach uses a convenient single
system image abstraction across a cluster of nodes, that al-
lows for dynamic network and computational load-balancing
and fine-grained migration of simulation state. The system
provides standard benefits that the modern Java runtime af-
fords, such as type-safety, garbage collection and portability.
Nevertheless, JiST performs well, either matching or exceed-
ing the performance of ns2 and the highly optimized GloMo-
Sim runtime in both throughput and memory consumption.
We illustrate the practicality of the JiST framework by ap-
plying it to the construction of SWANS, a scalable wireless
ad hoc network simulator.

Keywords
discrete event simulation, simulation languages and environ-
ments, parallel and distributed simulation, Java, wireless
networks

1. INTRODUCTION
From physics to biology, from forecasting the weather to

predicting the performance of a new processor design, re-
searchers in many avenues of science increasingly depend
on software simulations to accurately model both realistic
phenomena as well as hypothetical scenarios. Simulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSWiM’03 San Diego, California USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

facilitates the analysis of complex systems that may not be
satisfactorily expressed analytically, nor easily reproduced
and observed empirically, if at all.

For instance, and also as a running example for the re-
mainder of this paper, the recent research focus of the net-
working and distributed systems communities on wireless
ad hoc networks has fundamentally depended on simulation.
Analytically quantifying the performance and complex be-
havior of even simple protocols in the aggregate is often im-
precise. On the other hand, performing actual experiments
is onerous: acquiring hundreds of devices, managing their
software and configuration, controlling a distributed experi-
ment and aggregating the data, possibly moving the devices
around, finding the physical space for such an experiment,
isolating it from interference and generally ensuring ceteris
paribus are but some of the difficulties that make empiri-
cal endeavors daunting. Consequently, the vast majority of
publications in this area are based entirely upon simulation.

Simulating an ad hoc network, or any other phenomenon,
requires an accurate computational model that is neverthe-
less efficient. The fundamental trade-off is to develop a
sufficiently abstract representation of the state and of the
state changes that can nonetheless produce meaningful, re-
liable results. For example, simulation time can often be
discretized to produce discrete event simulations, which can
be readily encoded as event-driven programs. Events are
time-stamped messages, processed in their temporal order.
Processing an event involves updating the simulation state
according to the given model, and potentially scheduling
more events in the future.

Due to their popularity and widespread utility, discrete
event simulators have been the subject of much research
into their efficient design and execution (surveyed in [46,
22, 49, 24]). From a systems perspective, researchers have
built many types of simulation libraries or execution run-
times spanning the gamut from the conservatively parallel
to the aggressively optimistic, and from the shared mem-
ory to the message passing paradigms. From a modeling
perspective, researchers have designed numerous simulation
languages that codify event causality, execution semantics
and simulation state constraints, which both simplify paral-
lel simulation development and permit important static and
dynamic optimizations.

Yet, despite a plethora of ideas and contributions to the-
ory, languages and systems, the parallel simulation com-
munity has repeatedly asked itself “will the field survive?”
under a perception that it had “failed to make a significant
impact in the general simulation community,” (see [23, 47, 8]

and others). Even though a number of parallel discrete event
simulation (PDES) environments have been shown to scale
beyond 104 nodes [57], slow sequential simulators remain the
norm. In particular, most published ad hoc network results
are based on simulations of few nodes (usually only around
200 nodes), for a short duration (frequently just 90 seconds),
and over a limited field. Larger simulations usually compro-
mise on simulation detail or restrict node mobility.

These observations influenced the directions of the JiST
project. Specifically, we decided to:

• not invent a simulation language – new languages, and
especially domain-specific ones, are rarely adopted by
the broader community;

• not create a simulation library – libraries often require
developers to litter their code with PDES-specific, non-
portable library calls and impose unnatural program
structure to achieve performance and concurrency; and

• not develop a new language runtime – custom runtimes
are rarely as optimized, reliable or portable as generic
runtimes.

Instead, we hoped to bring simulation time execution se-
mantics to a modern and popular virtual machine.

1.1 Objectives
JiST, which stands for Java in Simuation Time, is a new

discrete event simulation system that integrates some of the
prior systems and languages approaches. Specifically, the
key motivation behind JiST is to create a simulation system
that can execute discrete event simulations both efficiently
and transparently, yet to achieve this using only a standard
systems language and runtime, where:

• efficient refers to a simulation runtime that compares
favorably with existing, highly optimized simulation
engines; the ability to execute a given simulation pro-
gram in parallel and optimistically; dynamically opti-
mizing the configuration of the simulation across the
available computational resources to improve process-
ing throughput, and; reasoning about simulation state
and event causality constraints to improve throughput.

• transparent implies that simulation programs are au-
tomatically transformed to run with simulation time
semantics; simulations are instrumented to support
the various concurrency, consistency and reconfigura-
tion protocols necessary for efficient sequential, par-
allel or speculative execution, without requiring pro-
grammer intervention or calls to specialized simulation
libraries.

• standard denotes writing simulations in a conven-
tional programming language and running these pro-
grams over a conventional runtime, where the term
conventional describes a commonly used systems pro-
gramming language, as opposed to a domain-specific
language designed explicitly for simulation.

These three goals – the last one in particular – highlight
an important distinction between JiST and previous simula-
tion systems in that the simulation code that runs on JiST
need not be written in a domain-specific language invented
specifically for writing simulations, nor need it be littered
with special-purpose system calls and call-backs to support

�

�

	
object

entity

simulation state

Figure 1: Simulation programs are partitioned into
entities along object boundaries. Thus, entities do
not share any application state and can indepen-
dently progress through simulation time between in-
teractions.

concurrency, serialization, distribution or dynamic reconfig-
uration protocols. Instead, JiST transparently provides the
performance benefits of parallel and optimistic simulation
execution to simulation programs written in plain Java over
an unmodified Java virtual machine. It is also important to
clarify that JiST is not intended to simulate the execution of
arbitrary Java programs. Rather, it is a simulation frame-
work that can transparently and efficiently execute simula-
tion programs over the Java platform.

A more detailed discussion regarding the benefits of the
JiST approach, including the choice of Java, various runtime
design decisions and the use of JiST as a research platform,
is left to Section 5. Next, we describe the design and imple-
mentation in Sections 2 and 3, followed by a performance
evaluation of the system in Section 4. We discuss the related
and prior work in Section 6.

2. DESIGN
The purpose of the JiST system is to run discrete event

simulations both efficiently and transparently using a stan-
dard systems language and runtime. In this section, we elab-
orate on what it means to execute a program in simulation
time, and provide an overview of how the JiST system sup-
ports this abstraction as well as wireless network simulation.

2.1 Simulation time execution
The Java virtual machine (JVM) [39] is a stack-based

Java byte-code execution engine. In this standard execu-
tion model, which we refer to as actual time execution, the
passing of time is not dependent on the progress of the ap-
plication. In other words, the system clock advances regard-
less of how many byte-code instructions are processed. Also,
the program can advance at a variable rate, since it depends
not only on processor speed, but also on other unpredictable
things, such as interrupts and application inputs. Moreover,
the JVM certainly does not make strong guarantees regard-
ing timely program progress: it may decide, for example, to
perform a garbage collection sweep at any point.

To solve such problems, much research has been devoted
to executing applications in real time or with more pre-
dictable performance models, wherein the runtime can guar-
antee that instructions or sets of instructions will meet given

�

�

�

���

���

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

virtual
machine

kernel
simulation

rewriter
compiler
(javac)

2

3

1

	�		�	
	�	

�

�

�

���
���
���
���

object
entityjava source code

java bytecode modified classes

Figure 2: The JiST system architecture – simulations are (1) compiled, then (2) dynamically instrumented
by the rewriter and finally (3) executed. The compiler and virtual machine are standard Java language
components. Simulation time semantics are introduced by the rewriter, and supported at runtime by the
simulation time kernel.

deadlines. Thus, the rate of application progress is made de-
pendent on the passing of time.

In JiST the opposite is true: that is, the progress of time
depends on the progress of the application. The application
clock, which represents simulation time, does not advance
to the next discrete time point until all processing for the
current, discrete simulation time has been completed.

In simulation time execution, individual primitive appli-
cation byte-code instructions are processed sequentially, fol-
lowing the standard Java control flow semantics, but the
application time remains unchanged. Application code can
advance time only via the sleep(n) system call. In essence,
every instruction takes zero time to process except sleep,
which advances the simulation clock forward by exactly n
time quanta. The JiST runtime processes an application
in its simulation-temporal order until all the events are ex-
hausted or until a pre-determined ending time is reached,
whichever comes first.

The notion of simulation time itself is not new: simulation
program writers have long been accustomed to explicitly
track the simulation time and explicitly schedule simulation
events in time-ordered queues [45]. The simulation time con-
cept is also integral to a number of simulation languages and
simulation class libraries. The novelty of the JiST system
lies in that it embeds the simulation time semantics into the
Java execution model, which allows the system to transpar-
ently run the resulting simulations efficiently. The structure
of these simulation programs is now described.

2.2 Simulation programs
JiST simulation programs are written in plain Java, an

object-oriented language. As in any object-oriented lan-
guage the entire simulation program comprises numerous
classes that collectively implement the logic of the simula-
tion model. During its execution, the state of the program is
contained within individual objects. These objects commu-
nicate by passing messages, represented as object method
invocations in the language.

In order to facilitate the design of simulations, JiST ex-
tends this traditional programming model with the notion
of entities. Entities logically encapsulate application ob-
jects (Figure 1) and serve to demarcate independent sim-
ulation components. Every application object is contained
within exactly one entity, and simulation events are then
intuitively represented as method invocations among these
entities. This is a convenient abstraction that not only elim-
inates the need for an explicit simulation event queue, but
also enforces a clean partitioning of the simulation state.

To enforce this simulation partitioning and prevent object
communication across entity boundaries, each (mutable) ob-
ject in the system must belong to a single entity and must be
entirely encapsulated within it. In Java, this means that all
references to an object must originate either directly or indi-
rectly from a single entity. This condition suffices to ensure
simulation partitioning, because Java is a safe language.

JiST manages a simulation at the granularity of its enti-
ties. Instructions and method invocations within an entity
follow the regular Java semantics, entirely opaque to the
JiST infrastructure. The vast majority of this code is in-
volved with encoding the logic of the simulation model and
is entirely unconnected to the notion of simulation time. All
the standard Java class libraries are available and behave
as expected. In addition, the simulation developer has ac-
cess to a few basic JiST primitives, including functions such
as getTime and sleep, which return the current simulation
time and advance it, respectively.

In contrast, invocations across entities are executed in
simulation time. This means that an invocation is performed
on the callee entity when its state is at the same simulation
time as the calling entity. Thus, cross-entity method in-
vocations act as synchronization points in simulation time.
The invocations are non-blocking. They are queued in sim-
ulation time order and are performed without continuation.
Because of the simulation partitioning, interactions among
entities can only occur via the JiST infrastructure.

Since entities do not share any application state, each en-
tity can actually progress through simulation time indepen-

dently between interactions. Thus, by tracking the simula-
tion time of each entity individually, the model can sup-
port concurrent execution. Each entity ei represents a tuple
〈statei, time〉, and the state of the entire simulation at any
given time is the union of the state of all its entities at that
time: state(t) = ∪〈statei, t〉. By adding entity checkpoint-
ing, the model can even support speculative execution.

The role of the simulation programmer is to codify the
simulation model in regular Java, and to partition the state
of the simulation not only into objects, but also into a set
of independent entities along reasonable application bound-
aries. For example, a wireless simulation would be con-
structed from entities for nodes, radios, routing protocols,
etc., as discussed in Section 5.4. The JiST infrastructure
will then transparently and efficiently execute the program
with simulation time semantics.

The JiST model of execution, known as the concurrent
object model, is similar to, for example, the Compose [43]
simulation library. It invokes a method for every message
received, and executes it to completion. This is in contrast
to the process model that is used, for example, in Parsec [8],
wherein explicit send and receive operations are interspersed
in the code. In the process model, each entity must store
a program-counter and a stack as part of its state. Unlike
Compose, message sending in JiST is embedded in the lan-
guage and does not require a class library. Unlike Parsec,
JiST operates within regular Java syntax, without requiring
new language constructs and compilers.

2.3 Wireless network simulations
Although JiST can efficiently support general-purpose dis-

crete event simulations, one of the primary motivations for
its creation was for the scalable simulation of wireless ad hoc
networks. It out-performs existing solutions in this space,
owing to a number of design decisions, which we contrast
with two popular solutions: ns2 [45] and GloMoSim [65].

The ns2 network simulator has a long history with the
networking community, is widely trusted, and has been ex-
tended to support mobility and wireless networking proto-
cols. It is designed as a monolithic, sequential simulator.
ns2 uses a clever “split object” design, which allows Tcl-
based script configuration of C-based object implementa-
tions. This approach is convenient for users. However, it in-
curs a substantial memory overhead and increases the com-
plexity of simulation code. Researchers have extended ns2
to conservatively parallelize its event loop. However, this
technique has proved primarily beneficial for distributing
ns2’s considerable memory requirements. Based on numer-
ous published results, it is not easy to scale ns2 beyond a
few hundred simulated nodes. Simulation researchers have
shown ns2 to scale, with difficulty and substantial hardware
resources, to simulations of a few thousand nodes.

GloMoSim is a newer simulator written in Parsec that has
recently gained popularity within the wireless ad hoc net-
working community. It was designed specifically for scalable
simulation by explicitly supporting efficient, conservatively
parallel execution with lookahead. The sequential version
of GloMoSim is freely available. The conservatively paral-
lel version has been commercialized as QualNet. Due to
Parsec’s large per-entity memory requirements, GloMoSim
implements a technique called “node aggregation,” wherein
state of multiple simulation nodes are multiplexed in a sin-
gle Parsec entity. While this effectively reduces memory

�

�

	

object

separator

timeless

entity

Figure 3: The rewriter partitions applications into
entities. Entities reference one another only through
separator stubs, and communicate by sending mes-
sages via the simulation time kernel.

consumption, it incurs a performance overhead and also
increases code complexity. The aggregation of state also
renders speculative execution techniques impractical. Glo-
MoSim has been shown to scale to 10,000 nodes on large,
specialized multi-processor machines.

In contrast, JiST is designed to transparently execute sim-
ulations in a concurrent, distributed and also speculative
fashion, thereby achieving scalability. Wireless network sim-
ulations are particularly well-suited to optimistic execution
models, since wireless nodes contain independent simulation
state and the likelihood that one node causes a simulation
rollback at another node decreases with the distance be-
tween them. Speculative execution also lowers the synchro-
nization cost, which enables simulations to be distributed
across a cluster of networked machines. We will expand on
this theme in Section 5.

2.4 System architecture
The JiST system consists of four distinct components: a

compiler, language runtime or virtual machine, rewriter and
simulation time kernel. Figure 2 presents the JiST architec-
ture pictorially. A simulation is first compiled, then dynami-
cally rewritten at application load time, and finally executed
by the virtual machine with support from the simulation
time kernel.

A primary goal of JiST is to execute simulations efficiently
and transparently, using only a standard language and run-
time. Consequently, the compiler and runtime components
of the JiST system can be any standard Java compiler and
Java virtual machine, respectively. We use the Java 2 v1.4
implementation, both the javac and jikes compilers, and
the Sun HotSpot Java Virtual Machine v1.4.1 on Linux and
Windows. Simulation time execution semantics are intro-
duced by the two remaining system components.

The rewriter component of JiST is a dynamic class loader.
It intercepts all class load requests, and subsequently verifies
and modifies the requested classes. These modified, rewrit-
ten classes now incorporate the embedded simulation time
operations, but otherwise completely preserve the existing
program logic. The program transformations occur once,
at load time, and do not incur rewriting overhead during
execution.

At runtime, the modified classes interact closely with the
simulation time kernel through the various injected or modi-

class Object Timeless Entity total
base size 28947 2940 2177 34064
total increase 6908 (23.9%) 816 (27.8%) 4025 (184.9%) 11749 (34.5%)
constant pool 4908 (17.0%) 436 (14.8%) 3006 (138.1%) 8350 (24.5%)
code, etc. 2000 (6.9%) 380 (12.9%) 1019 (46.8%) 3399 (10.0%)

Figure 4: Rewriter processing increases class sizes. The figures shown above are the increases in bytes (and
as a percentage), from the processing of the complete SWANS code-base. The data is split into the three
JiST class categories, showing that the majority of the increase occurs among entity classes, and that much
of the increase is due to new constant pool entries.

fied operations. The kernel is responsible for all the runtime
aspects of the simulation time abstraction. For example, it
maintains the simulation time of each entity, ensures proper
synchronization, implements efficient checkpointing or roll-
back and balances load on behalf of the running simulation
application. It can be implemented with a variety of con-
currency and synchronization models. The kernel can also
integrate with external software components designed for
high-performance parallel distributed applications (such as
MPI [29] or PVM [61]) and leverage specialized hardware
when available.

3. IMPLEMENTATION
The notable pieces of the JiST system are the byte-code

rewriter and the simulation time kernel, since these compo-
nents introduce and support the simulation time execution
semantics, respectively. We describe their implementation
in detail. We then describe the JiST API, which exposes
the execution semantics at the language level, and provide a
simple “Hello world!” for illustration. Finally, we describe
the manner in which simulations written to this API can be
transparently executed both in parallel and optimistically.

3.1 Rewriter
The purpose of the rewriting step is to transform the JiST

instructions embedded within the compiled simulation pro-
gram into code with the appropriate simulation time seman-
tics, respectively. The result is a partitioned application,
as depicted in Figure 3, in which entities encapsulate pri-
vate state, reference other entities only through separator
stubs, and communicate with one another only via the sim-
ulation time kernel. The basic design of the rewriter is that
of a multi-pass visitor over the class file structure, travers-
ing and possibly modifying the class, its fields and methods,
and their instructions, based on the set of rules summarized
below.

The rewriter first verifies an application by performing
byte-code checks, in addition to the standard Java verifier,
that are specific to simulations. Specifically, it ensures that
all classes that are tagged as entities conform to entity re-
strictions: the fields of an entity must be non-public and
non-static; all public methods should be concrete and should
return void; and some other minor restrictions. These en-
sure that the state of an entity is completely restricted to
its instance, and also allow entity methods to be invoked
without continuation, as per simulation time semantics.

Conforming to the earlier-stated goal of partitioning the
application state, entities are never referenced directly by
other entities. This isolation is achieved by the insertion
of stub objects, called separators. The rewriter also adds a
self-referencing separator field to each entity and code to ini-

tialize it using a unique reference provided by the simulation
time kernel upon creation.

For uniformity, all entity field accesses are converted into
method invocations. Then, all method invocations on enti-
ties are subsequently replaced with invocations to the sim-
ulation time kernel. This invocation requires the caller en-
tity time, the method invoked, the target instance and the
invocation parameters: the simulation time comes from the
kernel; the method invoked is identified using an automati-
cally created and pre-initialized method reflection stub; the
target instance is identified using its separator, which is
found on the stack in place of the regular Java object ref-
erence, along with the invocation parameters, which must
be packed into an object array to conform with Java calling
conventions. The rewriter injects all the necessary code to
do this inline, and also deals with the natural complications
of handling primitive types, the this keyword, constructor
invocation restrictions, static initializers, and other Java-
related details.

The rewriter then modifies all entity creations in all classes
to place a separator on the stack in place of the object ref-
erence. All entity types in all entities are also converted to
separators, namely in: field types, method parameter types
and method return types, as well as typed instructions, in-
cluding field accesses, array accesses and creation, and type
casting instructions. Finally, all static calls to the JistAPI

object are converted into equivalent implementations that
invoke functionality of the simulation time kernel.

In addition to the entity-related program modifications,
the rewriter also performs various static analyses that help
drive runtime optimizations. For instance, the rewriter iden-
tifies open-world immutable objects [12, 52] and labels them
as timeless, which means that they may be passed by refer-
ence across entities, not by copy. In some cases, the analysis
can be overly conservative due to Java static type restric-
tions. The programmer can then explicitly define an object
to be timeless, implying that the object will not be modified
in the future even though it technically could be. The re-
writer performs a number of similar analyses and generates
code to assist in efficient object checkpointing and remote
entity invocation as in the KaRMI system [54].

For ease-of-use, the JiST rewriter is implemented as a dy-
namic class loader. It uses the Byte-Code Engineering Li-
brary [20] to automatically modify the simulation program
byte-code as it is loaded by the JiST bootstrapper into the
Java virtual machine. Since the rewriting is performed only
once, it could, if necessary, also be implemented as an offline
process. Thus, rewriting speed is not a critical metric. Nev-
ertheless, JiST loads, verifies and rewrites all of the SWANS
classes in under 2 seconds. Even the addition of a rewriter
cache does not reduce this time significantly, indicating that

JistAPI.java
1 package jist.runtime;
2 public class JistAPI {
3 public static interface Entity { }
4 public static interface Timeless { }
5 public static long getTime() {..}
6 public static void sleep(long n) {..}
7 public static void end() {..}
8 public static void endAt(long t) {..}
9 public static JistAPI.Entity THIS;

10 public static EntityRef ref(Entity e) {..}
11 }

Figure 5: The JiST application programming inter-
face is exposed at the language level via the JistAPI

object. The rewriter replaces default noop imple-
mentations of the various functions and interfaces
with their simulation time equivalents.

the majority of the startup time is due to the Java class
loader.

The rewriter processing naturally increases the size of the
simulation class files. As shown in Figure 4, this overall
increase is not considerable. The greatest relative increase
is concentrated among entity classes, because they are usu-
ally just small wrappers and have accessor methods, stub
fields, self-referencing separators and various runtime helper
methods added to them during rewriting. Furthermore, the
majority of the increase in all classes is concentrated in the
constant pool. The rewriter, as currently implemented, sim-
ply adds constants that it requires and leaves any unused
entries in the constant pool. While these could be removed
to further reduce the class size, they do not affect perfor-
mance and amount to only a few kilobytes of memory. Most
importantly, the increase to the code segment of non-entity
classes, which is the bulk of the simulation model, is less
than 7%. The majority of this code is for packing invoca-
tion parameters and dealing with the Java primitive types.

3.2 Simulation time kernel
After rewriting, the simulation classes may be executed

over a regular Java virtual machine. During their execu-
tion, these rewritten applications interact with the simula-
tion time kernel, which supports the simulation time seman-
tics.

The simulation time kernel serves a number of functions.
The kernel is responsible for scheduling and transmitting
time-stamped messages among the entities. It provides uni-
que identifiers for each entity created in the system, which
are used, for example, by the entity separator stubs dur-
ing method invocation. The kernel maintains a time-stamp
and a message queue structure for every entity in the sys-
tem, and is thus able to respond to application getTime re-
quests and time-stamp outgoing invocation messages. The
kernel queues messages on behalf of each entity, and auto-
matically advances the entities though simulation time, de-
livering messages for application processing as appropriate.
And, finally, the kernel supports various system maintenance
functions, such as entity garbage collection, load balancing
and application monitoring.

Simulation processing begins via an anonymous bootstrap
entity with a single scheduled message: to invoke the main()
method of the given entry point class at time t0. The

system then processes events in simulation temporal order
until there are no more events to process, or until a pre-
determined time is reached, whichever comes first. This
general approach supports the sequential execution of any
discrete event simulation. JiST may transparently exploit
parallelism or process messages optimistically, as discussed
shortly.

In general, the design of the JiST simulation time ker-
nel is similar to that of the TimeWarp Operating System
[33] kernel and that of the Parsec runtime, however it is
considerably more lightweight and efficient. The language-
based implementation allows efficient message delivery to
local entities, without any serialization. Furthermore, since
entities are merely objects rather than threads or processes,
they utilize fewer system resources: JiST entities require
less memory and neither require a stack nor encumber the
system scheduler. Finally, JiST entities can transparently
support efficient checkpointing and rollback using language-
based serialization and reflection.

3.3 API and semantics
The result of the application modifications combined with

the necessary runtime support is the introduction of simula-
tion time execution semantics. These semantics are driven
through a small API, which is exposed at the language level
through various interfaces, methods and fields. The en-
tire JiST simulation time interface is contained within the
JistAPI class listed in Figure 5 and explained below:

• Entity interface: tags a simulation object as an en-
tity, which means that invocations on this object fol-
low simulation time semantics. e.g. jist.swans.mac.
MacEntity.

• Timeless interface: explicitly tags a simulation object
as timeless, which means that it will not be changed
across simulation time and thus need not be copied
when transfered among entities. Immutable objects
are implicitly tagged as timeless. e.g. jist.swans.

node.Message.
• getTime(): returns the calling entity simulation time.

The current time is the time of the current message
being processed plus any additional sleep time.

• sleep(long): advance calling entity simulation time.
• end(): end simulation after the current time-step.
• THIS: entity self-referencing separator, analogous to

Java this object self-reference.
• ref(Entity): returns a separator stub of a given en-

tity. All statically detectable entity references are au-
tomatically converted into separator stubs by the re-
writer, so this operator should not be needed. It is
included only to deal with rare instances of creating
entity types dynamically, and for completeness.

3.4 Hello world!
These basic primitives allow us to write simulation pro-

grams, including full wireless network simulators. The sim-
plest such program, that still uses simulation time semantics,
is a counterpart of the obligatory “hello world” program. It
is a simulation with only a single entity that emits one mes-
sage at every simulation time-step, as listed in Figure 6.

This simplest of simulations highlights some important
points. To begin, the hello class is an entity, since it imple-
ments the JistAPI.Entity interface (line 2). Entities can be
created (line 5) and their methods invoked (lines 6 and 10)

hello.java

1 import jist.runtime.JistAPI;
2 class hello implements JistAPI.Entity {
3 public static void main(String[] args) {
4 System.out.println("simulation start");
5 hello h = new hello();
6 h.myEvent();
7 }
8 public void myEvent() {
9 JistAPI.sleep(1);

10 myEvent();
11 System.out.println("hello world, t="
12 +JistAPI.getTime());
13 }
14 }

Figure 6: The simplest of simulations consists of a
single entity that emits a message at each time step.

just as any regular Java object. The entity method invoca-
tion, however, happens in simulation time. This is most ap-
parent on line 10, which is a seemingly infinite recursive call.
In fact, if this program is run under a regular Java virtual
machine (i.e. without the JiST rewriting machinery) then
we would encounter a stack overflow at this point. However,
under JiST, the semantics is to schedule the invocation via
the simulation time kernel, and thus the call becomes non-
blocking. Therefore, the myEvent method, when run under
JiST semantics, will advance simulation time by one time
step (line 9), then schedule a new event at that future time,
and finally print a hello message (line 11) with the entity
simulation time (line 12). As expected, the output is:

simulation start
hello world, t=1
hello world, t=2
etc.

3.5 Parallel simulation execution
The system, as described thus far, is capable of executing

simulations sequentially, and it does so with performance
that either matches or exceeds existing, highly optimized
simulation engines. JiST, however, was explicitly designed
with concurrent, distributed and speculative execution in
mind. By modifying the simulation time kernel, the same,
unmodified simulations can be executed over a more power-
ful computing base. This section describes the mechanisms
that allow for applications to be transparently executed in
this manner.

Parallel execution in JiST is achieved by dividing the sim-
ulation time kernel into multiple threads of execution, called
controllers. Each controller owns and processes the events of
a subset of the entities in the system, as shown in Figure 7.
Naturally, controllers synchronize with one another in order
to bound their otherwise independent forward progress.

However, JiST automatically supports rollback, so the
simulation time synchronization protocols among the var-
ious controllers need not be conservative. State checkpoints
can be automatically taken through object cloning. Alter-
natively, efficient undo operators can be statically generated
through code inspection in some cases, or possibly provided
by the developer in other cases, for performance. In any
event, entity state changes can always be dynamically inter-
cepted and logged either at the entity, object or field level,

�

�

�

. . .

. . .
.

separatorcontroller entity

. . .

Figure 7: The JiST framework allows parallelism
to be transparently introduced by partitioning the
system entities among different, possibly distributed
threads of control. Separators function to create
a single system image abstraction among the dis-
tributed controllers.

allowing the JiST system to transparently perform specula-
tive execution.

Controllers are distributed in order to run simulations
across a cluster of machines. Conveniently, Java support
for remote method invocation combined with automatic ob-
ject serialization provides location transparency among the
distributed controllers. Even beyond this, separators allow
entities to dynamically be moved among controllers in the
system, for balancing load or for minimizing invocation la-
tency and network bandwidth. The automatic insertion of
separators between entities at the static rewriting phase pro-
vides the simulation developer with a convenient single sys-
tem image abstraction.

4. EVALUATION
Based on conventional wisdom [6], one would argue ag-

ainst implementing the JiST system in Java, an interpreted
language, for performance reasons. In fact, the vast major-
ity of existing simulation systems have been written in C
and C++, or their derivatives. Our choice in favor of Java
was made, despite this knowledge, for software engineering
reasons. It was decided to sacrifice some sequential event-
processing throughput so that we could:

• transparently run our simulations in parallel and op-
timistically, as discussed in Section 3.5, hoping to re-
gain simulation performance and scalability through
an analysis of time warp protocols in the context of
wireless simulation; and

• gain prototyping speed from automatic garbage collec-
tion, type safety and other similar language benefits,
as discussed in Section 5.2.

We were thus pleasantly surprised to discover that JiST
actually out-performs the popular ns2 [45] and also the scal-
able GloMoSim [65] simulators, even on sequential bench-
marks. We chose to investigate this matter further, and

discovered that aggressive profile-driven optimizations com-
bined with the latest Java runtimes result in a simulation
system that can even match or exceed the performance of
the highly-optimized Parsec [8] runtime! In this section,
we present benchmark results comparing JiST against other
simulation systems.

The following measurements were taken on a 1133 MHz
Intel Pentium III uni-processor machine with 128 MB of
RAM and 512 KB of L2 cache, running the version 2.4.20
stock Redhat 9 Linux kernel with glibc v2.3. We used the
publicly available versions of Java 2 JDK (v1.4.1), Par-
sec (v1.1.1), GloMoSim (v2.03) and ns2 (v2.26). Each data
point presented represents an average of at least two runs,
with deviations of less then 1% in all cases. All tests were
also performed on a second machine – a more powerful and
memory rich dual-processor – giving identical absolute or
relative performance results.

4.1 Event throughput
Computational throughput is important for simulation

scalability. Thus, in the following experiment, we measured
the performance of each of the simulation engines in per-
forming a tight simulation event loop. We began the simu-
lations at time zero, with an event scheduled to do nothing
but schedule another identical event in the subsequent sim-
ulation time step. We ran each simulation for n simulation
time quanta, over a wide range of n, and measured the ac-
tual time elapsed.

Equivalent, efficient benchmark programs were written in
each of the systems.1 The JiST program looks similar to
the “hello world” program presented earlier. The Parsec
program sends null messages among native Parsec entities
using the special send and receive statements. The Glo-
MoSim test considers the overhead of the node aggregation
mechanism built over Parsec, which was developed to re-
duce the number of entities and save memory for scalability
(discussed shortly). The GloMoSim test is implemented as
an application component, that circumvents the node com-
munication stack. Both the Parsec and GloMoSim tests are
compiled using using pcc -O3, the most optimized setting.
ns2 utilizes a split object model, allowing method invoca-
tions from either C or Tcl. The majority of the performance
critical code, such as packet handling, is written in C, leav-
ing mostly configuration operations for Tcl. However, there
remain some important components, such as the mobility
model, that depend on Tcl along the critical path. Conse-
quently, we ran two tests: the ns2-C and ns2-Tcl tests corre-
spond to events scheduled from either of the languages. ns2
performance lies somewhere between these two, widely di-
vergent values, depending on how frequently each language
is employed for a given simulation. Finally, we developed a
baseline test to obtain a lower bound on the computation.
It is a program, written in C and compiled with gcc -O3,
that inserts and removes elements from an efficient imple-
mentation of an array-based heap.

The results are plotted in Figure 8. Please note the log-log
scale of this and subsequent plots. As expected, all the sim-
ulations run in time linear with respect to n. An unex-
pected result, since Java is interpreted, is that JiST out-
performs all the other systems, including the compiled ones.
It also comes within 20% of the baseline measure of the lower

1Simplified listings are included in the appendix.

0.01

0.10

1.00

10.00

100.00

0.1 1.0 10.0 100.0

tim
e

(s
ec

on
ds

)

events (in millions)

Simulation event throughput

baseline
JiST (cold)

JiST (warm)
Parsec

GloMoSim
ns2-C

ns2-Tcl

Figure 8: JiST has higher event throughput, and
comes within 20% of the baseline lower bound. The
kink in the JiST curve in the first fraction of a sec-
ond of simulation is evidence of JIT compilation at
work.

5 × 106 events time (sec) vs. baseline vs. JiST
baseline 1.640 1.0x 0.8x
JiST 1.957 1.2x 1.0x
Parsec 3.705 2.3x 1.9x
ns2-C 5.151 3.1x 2.6x
GloMoSim 23.720 14.5x 12.1x
ns2-Tcl 160.514 97.9x 82.0x

Figure 9: Time to perform 5 million events, and
normalized against both the baseline and JiST per-
formance.

bound. This is due to the impressive JIT dynamic compila-
tion and optimization capabilities of the modern Java run-
time. The optimizations can actually be seen as a kink in
the JiST curve during the first fraction of a second of sim-
ulation. To confirm this, we warmed the JiST test with 106

events, and observed that the kink disappears.
The table in Figure 9 shows the time taken to perform

5 million events in each of the measured simulation systems,
and also those figures normalized against both the baseline
and JiST performance. JiST is twice as fast as both Parsec
and ns2-C. GloMoSim and ns2-Tcl are one and two orders
of magnitude slower, respectively.

4.2 Message-passing overhead
Alongside event throughput, it is important to ensure that

inter-entity message passing scales well with the number of
entities. For simplicity of scheduling, many (inefficient) par-
allel simulation systems utilize kernel threads or processes
to model entities, which can lead to severe degradation with
scale.

The systems that we have considered do not exhibit this
problem. ns2 is a sequential simulator, so this issue does not
arise. Parsec, and therefore also GloMoSim, models entities
using logical processes implemented in user space and use an
efficient simulation time scheduler. JiST implements entities
as concurrent objects and also uses an efficient simulation

0.1

1.0

10.0

100.0

1000.0

0.1 1.0 10.0 100.0 1000.0

m
em

or
y

(M
by

te
s)

entities (in thousands)

Simulation memory consumed by entities

JiST
Parsec

GloMoSim
ns2

Figure 10: JiST allocates entities efficiently: compa-
rable to GloMoSim at 36 bytes per entity, and over
an order of magnitude less that Parsec or ns2.

time scheduler. The overheads of both Parsec and JiST were
empirically measured. They are both negligible, and do not
represent a scalability constraint.

4.3 Memory utilization
Another important resource that limits scalability is mem-

ory. We thus measured the memory consumed by entities
and by queued events in each of the systems. Measuring
the memory footprint of entities involves the allocation of n
empty entities and observing the size of the operating sys-
tem process, for a wide range of n. In the case of Java, we
invoke a garbage collection sweep and then request an in-
ternal memory count. Analogously, we queue a large num-
ber of events and observe their memory requirements. The
entity and event memory results are plotted in Figures 10
and 11, respectively. The base memory footprint of each of
the systems is less than 10 MB. Asymptotically, the process
footprint increases linearly with the number of entities or
events, as expected.

Figure 10 – JiST performs well with respect to memory re-
quirements for simulation entities. It performs comparably
with GloMoSim, which uses node aggregation specifically to
reduce Parsec’s memory consumption. A GloMoSim “en-
tity” is merely a heap-allocated object containing an aggre-
gation identifier and an event-scheduling heap. In contrast,
each Parsec entity contains its own program counter and
logical process stack2. In ns2, we allocate the smallest split
object possible, an instance of TclObject, responsible for
binding values across the C and Tcl memory spaces. JiST
achieves the same dynamic configuration capability without
requiring the memory overhead of split objects.

Figure 11 – JiST also performs well with respect to event
memory requirements. Though they store slightly different
data, the C-based ns2 event objects are exactly the same
size. On the other hand, Tcl-based ns2 events require the
allocation of a new split object per event, thus incurring
the larger memory overhead above. Parsec events require
twice the memory of JiST events. Presumably, Parsec uses

2Minimum stack size allowed by Parsec is 20 KB.

0.1

1.0

10.0

100.0

0.1 1.0 10.0 100.0 1000.0

m
em

or
y

(M
by

te
s)

events (in thousands)

Simulation memory consumed by events

JiST
Parsec/GloMoSim

ns2*

Figure 11: JiST allocates events efficiently: compa-
rable to ns2 (in C) at 36 bytes per queued event,
and half the size of events in Parsec and GloMo-
Sim. (*) Events scheduled in ns2 via Tcl will allocate
a split object and thereby incur the same memory
overhead as above.

memory entity event 10K nodes sim.
JiST 36 B 36 B 21 MB
GloMoSim 36 B 64 B 35 MB
ns2 544 B 36 B* 72 MB*
Parsec 28536 B 64 B 2885 MB

Figure 12: Per entity and per event memory over-
head, along with the system memory overhead for a
simulation scenario of 10,000 nodes, without includ-
ing memory for any simulation data. (*) Note that
the ns2 split object model will affect its memory
footprint more adversely than other systems when
simulation data is added.

some additional space in the event structure for scheduling
algorithm accounting.

The memory requirements per entity, mementity, and per
event, memevent, in each of the systems are tabulated in Fig-
ure 12. We also compute the memory footprint within each
system for a simulation of 10,000 nodes, assuming approxi-
mately 10 entities per node and an average of 5 outstanding
events per entity. In other words, we compute:

memsim = 104 × (10 × mementity + 50 × memevent).

Note that these figures do not include the fixed memory
base for the process nor the actual simulation data. These
are figures for empty entities and events alone, thus showing
the overhead imposed by each system.

Note also that adding simulation data would doubly af-
fect ns2, since it stores data in both the Tcl and C mem-
ory spaces. Moreover, Tcl encodes this data internally as
strings. The exact memory impact thus varies from simula-
tion to simulation. As a point of reference, regularly pub-
lished results of a few hundred wireless nodes occupy more
than 100 MB, and simulation researchers have scaled ns2
to around 1,500 non-wireless nodes using a process with a
2 GB memory footprint [58, 48].

4.4 Parallelism
Thus far, we have shown that our technique for embed-

ding simulation time produces an efficient sequential simula-
tion engine. There are numerous remaining design options
and trade-offs for the efficient implementation of a concur-
rent, distributed and optimistic simulation runtime, includ-
ing areas such as entity cloning and serialization, remote
invocation, checkpointing and undo, dynamic entity migra-
tion, load balancing, latency reduction, speculative execu-
tion bounds and message cancellation. We have not dis-
cussed these aspects of JiST, and therefore leave their eval-
uation outside the scope of this paper.

5. DISCUSSION
Having evaluated the computational and memory perfor-

mance of JiST against ns2, GloMoSim and Parsec, we found
that JiST either matches or out-performs all of these systems
in both time and space. This section summarizes the impor-
tant design decisions in each of the systems that bear most
significantly on these performance results. We then discuss
the various language and runtime alternatives that we con-
sidered, and also some uses for JiST as a research platform
in both the simulation and applied simulation spaces.

5.1 Performance summary
Parsec runs very quickly, and there are a number of rea-

sons for this. It is compiled and uses the gcc compiler to pro-
duce highly optimized binaries. It also uses non-preemptive
logical processes to avoid system switching overhead3. The
process-oriented model, however, exacts a very high mem-
ory cost per entity, since each entity must store a program
counter and its stack.

GloMoSim remedies the per entity overhead by inserting
an level of indirection in the message dispatch path and
aggregating multiple nodes into a single entity. While this
reduces the number of entities in the system, the indirection
comes with a performance penalty.

ns2 is a sequential engine, so message queuing and dis-
patch is efficient. However, ns2 employs a split object model
across C and Tcl to facilitate dynamic simulation configura-
tion. This not only forces a specific coding pattern, it also
comes at a performance cost of replicating data between
the two memory spaces. More importantly, it exacts a high
memory overhead. The ns2 code written in C still runs
quickly; the Tcl-based functionality is almost two orders of
magnitude slower.

JiST uses a concurrent object model of execution, and
thus does not require node aggregation. Since entities are
objects, as opposed to processes, the memory footprint is
small. There is also no context switching overhead on a
per event basis, and dynamic Java byte-code compilation
and optimization result in high computational throughput.
Since Java is a dynamic language, JiST does not require a
split object model. JiST has a built-in scripting language
that operates by reflection directly on the same objects used
to run the simulation. This both eliminates the performance
gap and the additional memory requirements.

3A Parsec context switch is implemented efficiently using
only a setjmp and a stack switch.

5.2 Language alternatives
However, given that JiST is a Java-based system, it is

natural to question this decision and to ask whether sim-
ilar benefits could not be attained using other languages.
Java has a number of advantages. It is a standard, widely
deployed language, not specific to writing simulations. Con-
sequently, the language boasts a large number of compilers
as well as portable, optimized language runtimes. Java is
object-oriented4 and supports object reflection, serialization
and cloning, which facilitates reasoning about the simula-
tion state at runtime. The intermediate byte-code represen-
tation conveniently facilitates code instrumentation to sup-
port the simulation time semantics. Type-safety and garbage
collection greatly simplify writing simulations by addressing
common sources of error. Type-safety allows, for example,
the event queue to be statically type-checked, rather than
forcing programmers to strictly adhere to event constants
when casting pointers to their appropriate function types
and to ensure stack discipline. Garbage collection prevents
memory leaks associated with simulation objects, such as
network packets, that can have variable lifetimes and may
traverse many different code paths in the system. This is
particularly important for large, long-running simulations,
where memory leaks are especially hazardous. These latter
two properties also considerably shorten and simplify the
simulation code.

Some of these properties exist in other simulation lan-
guages. JiST inherits them all from Java for “free”. Also,
these properties are not unique to Java. A system like JiST
could likely be implemented atop a number of other lan-
guages. Based on our knowledge of existing languages and
our experience implementing JiST, the most suitable candi-
dates include Smalltalk, C#, Ruby and Python.

5.3 Runtime alternatives
Alongside the language decision there were various, re-

lated design alternatives for the system runtime. Among
the more important design considerations, were the criteria
discussed below and summarized in Figure 13. For the pur-
poses of illustration, we compare JiST to the popular ns2
and scalable GloMoSim simulators, which run over Tcl+C
and Parsec runtimes, respectively.

5.3.1 Compilation
Certain simulation systems, such as ns2 which relies on

embedded Tcl, can be scripted. As noted by the ns2 design-
ers, their split object model allows for convenient simulation
composition and configuration. One can also dynamically
insert runtime inspection points and triggers to facilitate
tracing and debugging using reflection. On the other hand,
GloMoSim is written exclusively in Parsec, a compiled sim-
ulation language, providing significant performance advan-
tages as well as important static processing and checks.

JiST lies between these two points: it is compiled, and
thus statically type-checked, but only to an intermediate
byte-code representation. Since the byte-code is interpreted,
one still retains the ability to dynamically perform sim-
ulation configuration, tracing, and debugging. Specifically,
JiST supports Java-based scripting by integrating with the

4Except Java primitive types, which are not objects. This
language design decision imposes special processing require-
ments and unfortunately introduces unavoidable overhead
in some of the most performance-critical sections of JiST.

simulator runtime compilation sharing reuse
ns2/ PDNS Tcl, C split objects shared everything none
GloMoSim Parsec compiled shared nothing language
SWANS JiST unified objects, dynamic shared nothing, aggregation language and runtime

Figure 13: Summary of runtime design alternatives – SWANS/JiST is compared with GloMoSim/Parsec and
ns2/Tcl+C along the criteria of compilation, sharing and reuse, as discussed in Section 5.3

BeanShell interpreter [51]. Other candidate Java-based in-
terpreter engines include Jython (Python), Rhino (JavaScr-
ipt) and Jacl (Tcl). The JiST machinery also allows ac-
tions to be executed before and after each event on a per-
entity basis, which allows for orthogonal simulation inspec-
tion and logging, modifying the simulation state while it is
in progress and general-purpose debugging. It is also useful
for application-level functionality, such as efficiently imple-
menting node mobility. Thus, JiST inherits the positive at-
tributes of both the interpreted and the compiled. However,
it does rely heavily on JIT optimizations for performance.

5.3.2 Sharing
When modeling the state of a simulation, it is often possi-

ble to partition the state into entities, which serve to restrict
random state access. ns2 does not partition its simulation
state; it is built in a shared everything style. The advan-
tages are a simple programming model and fast local mem-
ory access. However, attempts to parallelize ns2, such as
PDNS [58], are forced to construct distributed shared mem-
ory, which can result in non-uniform memory access as well
as hidden serialization and synchronization costs.

GloMoSim is built over Parsec, which constructs a mes-
sage passing or shared nothing system. In Parsec, each entity
becomes an individually schedulable thread of control with
independent state (a logical process), context-switched ei-
ther at the system or user level. The advantage is that state
is explicitly partitioned and distributed under programmer
control. However, entity memory overheads and inter-entity
communication costs can become prohibitive. To reduce this
cost, GloMoSim implements state aggregation, both verti-
cally and horizontally: the states of an entire simulated
communication stack of components and the states of many
physically adjacent simulated nodes are combined within a
single Parsec entity. Though more efficient, this both breaks
the clean entity separation that Parsec supports and, more
importantly, inserts so much state into a single entity that
it becomes inefficient to perform speculative execution, in-
creasing synchronization costs.

JiST again lies between these two points: at the language
level entities, as in Parsec, share no state and communicate
only via messages, but at runtime all local entities co-exist
within a single execution context in one virtual machine and
efficiently pass messages as object references via the simula-
tion time kernel. Furthermore, the aggregation is automatic,
and does not require the extensive GloMoSim machinery; it
can occur non-uniformly and dynamically at entity granu-
larity, and without any programmer-defined vertical or hor-
izontal partitioning schemes. Finally, the JiST model trans-
parently permits the use of specialized hardware capable of
supporting multiple processors and non-uniform memory ac-
cess (NUMA) architectures by using Java’s threading model
over suitable virtual machines.

5.3.3 Reuse
The entire ns2 system is encoded in Tcl and C. However,

these languages are not reused, in the sense that they are
independent of the simulator implemented. In contrast, the
GloMoSim system is written in Parsec, a language that is
based on C. The Parsec compiler is actually implemented as
a front-end to gcc. A notable advantage [65] of this approach
is that various protocol implementations in C can be ported
to Parsec with relative ease. While this may be of little use
for prototype implementations, the reuse of large portions of
the gcc compiler also has some other advantages. It permits
the specialized Parsec compiler and the Parsec community
to benefit from sophisticated optimizations implemented in
the widely used gcc engine. It also provides other software
engineering benefits such as portability and credibility.

The JiST design goes one step further by reusing both
the language and its runtime. First, JiST embeds the sim-
ulation time primitives within plain Java in order to reuse
the standard Java language and existing compilers. The
primitives were designed to be preserved through the com-
pilation process, thus allowing the rewriter to operate at the
byte-code level without source-code access. The transforma-
tion also preserves various important Java properties such as
type safety. Secondly, JiST reuses the Java runtime. Since
the rewriter output is a set of class files and the simulation
time kernel is written entirely in Java, JiST can operate over
existing, highly-optimized virtual machines. Moreover, this
homogeneity actually permits important JIT optimizations
to occur across the application-kernel boundary, as shown
by the Jalapeño project [2]. Finally, the runtime provides
important functionality transparently, including reflection
and serialization.

5.4 Research platform
One of the design goals of the JiST system is to create a

platform upon which current PDES research may be trans-
parently exposed to the broader simulation community. In
fact, one of our goals is to apply JiST in the domain of
wireless network simulation. We also contend that the JiST
system is a convenient platform for the exploration of new
simulation techniques.

5.4.1 SWANS - Wireless network simulation
Both as a proof of the JiST concept and as a research

tool, we are building SWANS, a Scalable Wireless Ad hoc
Network Simulator. The SWANS software is organized as
independent software components that can be composed to
form complete wireless simulations, as shown in Figure 14.
There are components that implement different types of ap-
plications, networking, routing and media access protocols,
radio transmission, reception and noise models, signal prop-
agation and fading models and node mobility. Instances of
each component class are shown italicized in the figure.

�

�

�

�
N

od
e

N
od

e

N
od

e

. . . .

N
od

e

N
od

e

N
od

e
. . . .

N
od

e

N
od

e

N
od

e

.

Field
FreespaceRaleigh2D

Field
FreespacePathloss−RaleighFading−2D−Field

Field
FreespaceRaleigh2D

Field
FreespaceRaleigh2D

N
od

e

N
od

e

. . . .

Application
ConstBitRate

Transport
UDP

Network
IPv4

MAC
802.11b

Radio
NoiseAdd.

Mobility
RandWayPt.

Routing
ZRP

N
od

e

Figure 14: The SWANS simulator consists of event-
driven components that can be configured and com-
posed to form a meaningful wireless network simula-
tion. Different classes of components are shown in a
typical arrangement together with specific instances
of component implementations in italics.

Every SWANS component is encapsulated as a JiST en-
tity: it stores it own local state, and interacts with other
components via exposed entity interfaces. This pattern sim-
plifies simulation development by reducing the problem to
creating relatively small, event-driven components. It also
restricts state access and the degree of inter-dependence, al-
lowing components to be readily interchanged with suitable
alternate implementations, and for each simulated node to
be independently configured. Finally, it also restricts the
simulation communication pattern. For example, applica-
tion or routing components of different nodes do not com-
municate directly; they can only pass messages along their
own node stacks.

Consequently, the elements of the simulated node stack
above the Radio layer become trivially parallelizable, and
may be distributed with low synchronization cost. In con-
trast, different Radios do contend (in simulation time) over
the shared Field entity, and raise the synchronization cost
of a concurrent simulation execution. To reduce this con-
tention, as observed by the JiST simulation time kernel, the
simulated field is partitioned into non-overlapping, cooper-
ating Field entities along a grid.

It is important to note that communication among enti-
ties is very efficient. The JiST design incurs no serializa-
tion cost and no copy cost among co-located entities, since
these messages are merely Java objects that are passed along
via the simulation time kernel by their reference. The mes-
sages themselves are a chain of nested objects that mimic
the data encapsulation of the network stack. An additional
convenience of this approach is that it allows for the use
polymorphism in message processing.

Notably, the development of SWANS has been relatively
painless. Since JiST inter-entity message creation and de-
livery is implicit, as well as message garbage collection and

typing, the code is very compact and intuitive. Components
in JiST consume less than half of the code (in uncommented
line counts) of comparable components in GloMoSim, which
are already smaller than their implementations in ns2.

The SWANS project is still underway; the implementation
of more protocols and components is in progress. Currently,
SWANS supports all of the functionality of GloMoSim be-
low the MAC layer, and also selected protocols higher up
the stack. This progress validates JiST from a software en-
gineering perspective.

5.4.2 Simulation research
In addition to being a practical and efficient simulation

tool for building simulators, we believe that the JiST ab-
straction can provide a base for ongoing simulation research.
Primarily, this is due to the flexibility afforded by the inter-
mediate Java byte-code representation of simulations.

We have described, for example, how to convert simula-
tion time programs at the byte-code level to run in parallel
using either conservative synchronization algorithms [17, 18,
34] or speculative global virtual time [32, 25] algorithms.
The byte-code is also used to introduce a language-based
single system image abstraction that permits simulations to
be transparently distributed across a cluster of machines and
to be dynamically load balanced.

Other, more recent, research candidates exist. Static code
analysis techniques can be used to produce efficient entity
checkpointing as in [28]. Alternatively, reverse computa-
tions can be produced for entity rollback as in [16]. The
JiST design can simultaneously support different synchro-
nization protocols for different entities by tagging them with
different interfaces as in [43]. Finally, a continuation-passing
style transformation can be applied to process-oriented sim-
ulations in order to eliminate the need for an entity stack
as in [13]. Research into each of these ideas would benefit
from the availability of pre-existing simulations.

6. RELATED WORK
The JiST work spans three domains of research. The fol-

lowing sections describe the related research focused on sim-
ulation technology, on network simulation tools and on im-
proving the Java platform.

6.1 Simulation languages, libraries, systems
Simulation research has a rich history dating back to the

late 60s, when it prompted the development of Simula [19].
Many other simulation languages, libraries and systems have
since been designed, focusing on performance, concurrency
and distribution, speculative execution, and new simulation
domains.

One approach has been to create new simulation lan-
guages that are closely related to popular existing languages,
with extensions for message dispatch, synchronization and
other simulation time primitives. Csim [59], Yaddes (Par-
simony) [56], Maisie [7], and Parsec [8], for example, are
derivatives of C and C++, and include support for a process-
oriented simulation execution model. Others, such as Apos-
tle [14] and TeD [53] have taken a more domain-specific lan-
guage approach. Some work in the early 90s also focused on
object-oriented simulation languages. These projects, in-
cluding Moose [64], Sim++ [5], Pool [3], ModSim II [15],
Act++ [37] and Rosette [63] investigated various object-
oriented possibilities for checkpointing, inheritance, concur-

rency and synchronization in the context of simulation, in-
cluding a interesting mixture of the process oriented and
concurrent object execution models.

Another approach has been to create simulation libraries
that support parallel and speculative simulation execution,
including projects such as OLPS [1], Speedes [60], Yansl [36],
SimKit [27] and Compose [43]. A primary benefit of this
approach is that these libraries are usable within existing
languages.

Finally, researchers have investigated simulation “oper-
ating” systems, that support simulations as a set of com-
municating processes. The system kernel then schedules
message delivery and can transparently checkpoint process
state. For performance, these are often implemented as log-
ical processes. The landmark paper in this space is the
TimeWarp OS [33]. Projects such as GTW [21], Warped
[42], Parasol [44], DaSSF and others, including some of the
language projects mentioned above, have investigated im-
portant dynamic optimizations within this model.

6.2 Wireless network simulators
The networking community depends heavily on simula-

tion to validate its research. The ns2 [45] network simulator
has had a long history with the community and is widely
trusted. It was therefore extended to support mobility and
some wireless protocols [35]. Though it is primarily used se-
quentially in the community, researchers have extended ns2
to PDNS [58], allowing for conservative parallel execution.

GloMoSim [65] is a newer simulator written in Parsec
[8] that has recently gained popularity within the wireless
ad hoc networking community. The sequential version of
GloMoSim is freely available. The conservatively parallel
version has been commercialized as QualNet. Another no-
table, commercially-supported network simulator is OPNet.
Recently, the Dartmouth Scalable Simulation Framework
(DaSSF) has also been extended to support wireless ad hoc
network simulations [40]. Some of the simulation language
projects mentioned above, such as TeD and Speedes, have
also written network simulation software.

6.3 Java-related
Java, because of its popularity and favorable properties,

has become the focus of much recent research. The run-
time has not only undergone extensive performance work, it
has also become the compilation target for many other lan-
guages [62]. Projects such as JKernel [30] have investigated
the advantages of bringing traditional systems ideas of pro-
cess isolation and resource accounting into the context of a
safe language runtime. Others, including cJVM [4] and Jes-
sica [41], have used Java byte-code rewriting techniques to
provide an abstraction of a single-system image abstraction
over a cluster of machines. The MagnetOS project [9] has
extended this idea to support transparent code migration
in the context of an ad hoc network operating system [10].
The JavaParty [55], and xDU [26] projects have looked at
mechanisms to facilitate Java application partitioning and
distribution.

There has also been some research interest in using Java
for simulation [38]. Silk [31] is a new process-oriented sim-
ulation language that has a Java-based compiler and targets
the Java runtime. IDES [50] and Ptolemy [11] are a Java-
based simulation libraries. Finally, DaSSF includes hooks
to allow for Java-based event-handlers. To the best of our

knowledge, JiST is the first system to integrate simulation
execution semantics directly into the Java execution model.

7. CONCLUSION
In this paper, we have introduced JiST, a new Java-based

simulation framework that executes discrete event simula-
tions both efficiently and transparently, and does so by em-
bedding simulation time semantics directly into the Java
execution model. We outlined our rationale behind design-
ing the system to function within the standard Java lan-
guage and runtime, and contrasted it with other approaches
that require either specialized languages, custom libraries or
new runtimes. We then describe the details of the JiST im-
plementation, including the rewriter, simulation time kernel
and simulation programming interface, and continue with an
explanation of how this transparently allows for concurrent
and optimistic simulation execution. We present an eval-
uation of JiST, showing that it performs surprisingly well,
either matching or exceeding the serial performance of exist-
ing wireless simulators in both time and memory consump-
tion. Finally, we discuss the construction of the SWANS
prototype, a wireless ad hoc network simulator, and the ap-
plicability of JiST for ongoing simulation research. Our fu-
ture plans include development of more components for the
SWANS simulator and conducting an analysis of optimistic
execution in the context of wireless network simulation. We
hope that the performance of JiST, combined with its pleas-
ing software engineering attributes and the popularity of the
Java language, will facilitate the broad adoption of parallel
simulation research.

8. REFERENCES
[1] M. Abrams. Object library for parallel simulation

(OLPS). In Proceedings of the Winter Simulation
Conference, pages 210–219, Dec. 1988.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi,
S. F. Hummel, D. Lieber, T. Ngo, M. F. Mergen, J. C.
Shepherd, and S. Smith. Implementing Jalapeño in
Java. In Proceedings of Object-Oriented Programming
Systems, Languages and Applications, pages 314–324,
Nov. 1999.

[3] P. America and F. van der Linden. A parallel
object-oriented language with inheritance and
subtyping. In Proceedings of Object-Oriented
Programming Systems, Languages and Applications,
pages 161–168, Oct. 1990.

[4] Y. Aridor, M. Factor, and A. Teperman. cJVM: A
single system image of a JVM on a cluster. In
Proceedings of the International Conference on
Parallel Processing, Fukushima, Japan, Sept. 1999.

[5] D. Baezner, G. Lomow, and B. W. Unger. Sim++:
The transition to distributed simulation. In
Proceedings of 1990 SCS Multiconference on
Distributed Simulation, pages 211–218, Jan. 1990.

[6] D. Bagley. The great computer language shoot-out,
2001. http://www.bagley.org/~doug/shootout/.

[7] R. L. Bagrodia and W.-T. Liao. Maisie: A language
for the design of efficient discrete-event simulations.
IEEE Transactions on Software Engineering,
20(4):225–238, Apr. 1994.

[8] R. L. Bagrodia, R. Meyer, M. Takai, Y. Chen,
X. Zeng, J. Martin, and H. Y. Song. Parsec: A

parallel simulation environment for complex systems.
IEEE Computer, 31(10):77–85, Oct. 1998.

[9] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D.
Kim, B. Zhou, and E. G. Sirer. On the need for
system-level support for ad hoc and sensor networks.
ACM SIGOPS Operating Systems Review, 36(2):1–5,
Apr. 2002.

[10] R. Barr, T. D. Kim, I. Y. Y. Fung, and E. G. Sirer.
Automatic code placement alternatives for ad hoc and
sensor networks. Technical Report 2001-1853, Cornell
University, Computer Science, Nov. 2001.

[11] S. Bhattacharyya, E. Cheong, J. Davis II, M. Goel,
C. Hylands, B. Kienhuis, E. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth,
J. Tsay, B. Vogel, W. Williams, Y. Xiong, and
H. Zheng. Heterogeneous concurrent modeling and
design in Java. Technical Report UCB/ERL M02/23,
UC Berkeley, EECS, Aug. 2002.

[12] M. Biberstein, J. Gil, and S. Porat. Sealing,
encapsulation, and mutability. In Proceedings of 15th
European Conference on Object-Oriented
Programming, pages 28–52, June 2001.

[13] C. J. M. Booth and D. I. Bruce. Stack-free
process-oriented simulation. In Proceedings of the
Workshop on Parallel and Distributed Simulation,
pages 182–185, June 1997.

[14] D. Bruce. What makes a good domain-specific
language? APOSTLE, and its approach to parallel
discrete event simulation. In Proceedings of the
Workshop on Domain-specific Languages, Jan. 1997.

[15] O. Bryan, Jr. Modsim II - an object-oriented
simulation language for sequential and parallel
processors. In Proceedings of the Winter Simulation
Conference, pages 122–127, Dec. 1989.

[16] C. D. Carothers, K. S. Perumalla, and R. M.
Fujimoto. Efficient optimistic parallel simulations
using reverse computation. In Proceedings of the
Workshop on Parallel and Distributed Simulation,
pages 126–135, May 1999.

[17] K. M. Chandy and J. Misra. Distributed simulation: a
case study in design and verification of distributed
programs. IEEE Transactions on Software
Engineering, 5:440–452, 1979.

[18] K. M. Chandy and R. Sherman. The conditional event
approach to distributed simulation. In Proceedings of
the Distributed Simulation Conference, 1989.

[19] O.-J. Dahl and K. Nygaard. Simula, an Algol-based
simulation language. Communication of the ACM,
pages 671–678, 1966.

[20] M. Dahm. Byte code engineering with the BCEL API.
Technical Report B-17-98, Freie Universität Berlin,
Institut für Informatik, Apr. 2001.

[21] S. R. Das, R. M. Fujimoto, K. S. Panesar, D. Allison,
and M. Hybinette. GTW: A time warp system for
shared memory multiprocessors. In Proceedings of the
Winter Simulation Conference, pages 1332–1339, Dec.
1994.

[22] R. M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30–53, Oct. 1990.

[23] R. M. Fujimoto. Parallel discrete event simulation:
Will the field survive? ORSA Journal on Computing,
5(3):213–230, Summer 1993.

[24] R. M. Fujimoto. Parallel and distributed simulation.
In Proceedings of the Winter Simulation Conference,
pages 118–125, Dec. 1995.

[25] R. M. Fujimoto and M. Hybinette. Computing global
virtual time in shared-memory multiprocessors. ACM
Transactions on Modelling and Computer Simulation,
7(4):425–446, Aug. 1997.

[26] S. Gehani and G. Benson. xDU: A Java-based
framework for distributed programming and
application interoperability. In Proceedings of the
Parallel and Distributed Computing and Systems
Conference, 2000.

[27] F. Gomes, J. Cleary, A. Covington, S. Franks,
B. Unger, and Z. Ziao. SimKit: a high performance
logical process simulation class library in C++. In
Proceedings of the 27th Winter Simulation Conference,
pages 706–713, Dec. 1995.

[28] F. Gomes, B. Unger, and J. Cleary. Language-based
state-saving extensions for optimistic parallel
simulation. In Proceedings of the Winter Simulation
Conference, pages 794–800, Dec. 1996.

[29] W. Gropp and E. Lusk. The MPI communication
library: its design and a portable implementation. In
Proceedings of the Scalable Parallel Libraries
Conference, pages 160–165, Oct. 1993.

[30] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu,
and T. von Eicken. Implementing multiple protection
domains in Java. In Proceedings of the USENIX
Annual Technical Conference, pages 259–270, June
1998.

[31] K. J. Healy and R. A. Kilgore. Silk : A Java-based
process simulation language. In Proceedings of Winter
Simulation Conference, pages 475–482, Dec. 1997.

[32] D. R. Jefferson. Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3):404–425,
July 1985.

[33] D. R. Jefferson, B. Beckman, F. Wieland, L. Blume,
M. D. Loreto, P. Hontalas, P. Laroche, K. Sturdevant,
J. Tupman, V. Warren, J. J. Wedel, H. Younger, and
S. Bellenot. Distributed simulation and the Time
Warp operating system. In Proceedings of 12th ACM
Symposium on Operating Systems Principles, pages
77–93, Nov. 1987.

[34] V. Jha and R. L. Bagrodia. Transparent
implementation of conservative algorithms in parallel
simulation languages. In Proceedings of the Winter
Simulation Conference, Dec. 1993.

[35] D. B. Johnson. Validation of wireless and mobile
network models and simulation. In Proceedings of the
DARPA/NIST Workshop on Validation of Large-Scale
Network Models and Simulation, May 1999.

[36] J. A. Joines and S. D. Roberts. Design of
object-oriented simulations in C++. In Proceedings of
the Winter Simulation Conference, pages 157–165,
Dec. 1994.

[37] D. G. Kafura and K. H. Lee. Inheritance in
Actor-based concurrent object-oriented languages.
IEEE Computer, 32(4):297–304, 1989.

[38] R. A. Kilgore, K. J. Healy, and G. B. Kleindorfer. The
future of Java-based simulation. In Proceedings of the
Winter Simulation Conference, pages 1707–1712, Dec.
1998.

[39] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1996.

[40] J. Liu, L. F. Perrone, D. M. Nicol, M. Liljenstam,
C. Elliott, and D. Pearson. Simulation modeling of
large-scale ad-hoc sensor networks. In Proceedings of
the European Simulation Interoperability Workshop,
2001.

[41] M. J. M. Ma, C.-L. Wang, F. C. M. Lau, and Z. Xu.
JESSICA: Java-enabled single system image
computing architecture. In Proceedings of
International Conference on Parallel and Distributed
Processing Techniques and Applications, pages
2781–2787, June 1999.

[42] D. E. Martin, T. J. McBrayer, and P. A. Wilsey.
Warped: A time warp simulation kernel for analysis
and application development. In Proceedings of Hawaii
International Conference on System Sciences, pages
383–386, Jan. 1996.

[43] J. M. Martin and R. L. Bagrodia. Compose: An
object-oriented environment for parallel discrete-event
simulations. In Proceedings of the Winter Simulation
Conference, pages 763–767, Dec. 1995.

[44] E. Mascarenhas, F. Knop, and V. Rego. Parasol: A
multithreaded system for parallel simulation based on
mobile threads. In Winter Simulation Conference,
pages 690–697, Dec. 1995.

[45] S. McCanne and S. Floyd. NS (Network Simulator) at
http://www-nrg.ee.lbl.gov/ns, 1995.

[46] J. Misra. Distributed discrete event simulation. ACM
Computing Surveys, 18(1):39–65, Mar. 1986.

[47] D. M. Nicol. Parallel discrete event simulation: So
who cares? In Proceedings of the 11th Workshop on
Parallel and Distributed Simulation, June 1997.

[48] D. M. Nicol. Comparison of network simulators
revisited, May 2002.

[49] D. M. Nicol and R. M. Fujimoto. Parallel simulation
today. Annals of Operations Research, pages 249–285,
Dec. 1994.

[50] D. M. Nicol, M. M. Johnson, and A. S. Yoshimura.
The IDES framework: a case study in development of
a parallel discrete-event simulation system. In
Proceedings of the Winter Simulation Conference,
pages 93–99, Dec. 1997.

[51] P. Niemeyer. BeanShell: lightweight scripting for Java,
at http://www.beanshell.org/, 1997.

[52] I. Pechtchanski and V. Sarkar. Immutability
specification and its applications. In Proceedings of
Java Grande, Nov. 2002.

[53] K. S. Perumalla, R. M. Fujimoto, and A. Ogielski.
TeD - a language for modeling telecommunication
networks. SIGMETRICS Performance Evaluation
Review, 25(4):4–11, 1998.

[54] M. Philippsen, B. Haumacher, and C. Nester. More
efficient serialization and RMI for Java. Concurrency:
Practice and Experience, 12(7):495–518, 2000.

[55] M. Philippsen and M. Zenger. JavaParty —
Transparent remote objects in Java. Concurrency:
Practice and Experience, 9(11):1225–1242, 1997.

[56] B. R. Preiss. The Yaddes distributed discrete event
simulation specification language and execution
environment. In Proceedings of the SCS

Multiconference on Distributed Simulation, pages
139–144, 1989.

[57] G. Riley and M. Ammar. Simulating large networks:
How big is big enough? In Proceedings of the First
International Conference on Grand Challenges for
Modeling and Simulation, Jan. 2002.

[58] G. Riley, R. M. Fujimoto, and M. A. Ammar. A
generic framework for parallelization of network
simulations. In Proceedings of 7th Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication, Mar. 1999.

[59] H. Schwetman. Csim18 - the simulation engine. In
Proceedings of the 28th Winter Simulation Conference,
pages 517–521, Dec. 1996.

[60] J. S. Steinman. SPEEDES: Synchronous parallel
environment for emulation and discrete event
simulation. In Proceedings of the SCS Multiconference
on Advances in Parallel and Distributed Simulation,
pages 95–101, Jan. 1991.

[61] V. S. Sunderam. PVM: A framework for parallel
distributed computing. Concurrency: Practice and
Experience, 2(4):315–339, Dec. 1990.

[62] R. Tolksdorf. Programming languages for the Java
virtual machine at
http://www.robert-tolksdorf.de/vmlanguages,
1996-.

[63] C. Tomlinson and V. Singh. Inheritance and
synchronization in enabled-sets. In Proceedings of
Object-Oriented Programming Systems, Languages and
Applications, pages 103–112, Oct. 1989.

[64] J. Waldorf and R. L. Bagrodia. MOOSE: A concurrent
object-oriented language for simulation. International
Journal of Computer Simulation, 4(2):235–257, 1994.

[65] X. Zeng, R. L. Bagrodia, and M. Gerla. GloMoSim: a
library for parallel simulation of large-scale wireless
networks. In Proceedings of the 12th Workshop on
Parallel and Distributed Simulation, May 1998.

APPENDIX
We have included simplified versions of the benchmark pro-
grams used to measure the event throughput of the JiST,
Parsec, GloMoSim, and ns2 systems in Section 4.1. To the
best of our knowledge, these are the fastest possible im-
plementations. These listings do not include command-line
parsing, integration code scattered in various common files
(in case of GloMoSim and ns2), error handling, or the code
for simulation timing. However, they closely reflect the style
of code that a simulation developer would need to generate.

A. JiST
Jist.java

import jist.runtime.JistAPI;

class Jist implements JistAPI.Entity {

public static void main(String args[]) {

JistAPI.endAt(1000000);

(new Jist()).event();

}

public void event() {

JistAPI.sleep(1);

event();

}

}

B. Parsec
parsec.pc

message null { };

entity driver(int argc, char **argv) {

int i;

for (i=0; i<1000000; i++) {

send null { }

to self

after 1;

receive(null p) { }

}

}

C. GloMoSim
glomo.h

#define MODE_NULL 0

typedef struct {

int n; // number of events processed

int size; // total number of events

} app_t;

void benchInit(GlomoNode *nodePtr);

void benchFinalize(GlomoNode *nodePtr, app_t *clientPtr);

void benchProcess(GlomoNode *nodePtr, Message *msg);

glomo.pc

#include "api.h"

#include "message.h"

#include "application.h"

#include "glomo.h"

static app_t *allocApp(GlomoNode *nodePtr) {

// allocate application object in node structure

}

static app_t *getApp(GlomoNode *nodePtr) {

// retrieve application object from node structure

}

void benchInit(GlomoNode *nodePtr) {

app_t *clientPtr = allocApp(nodePtr);

clientPtr->n = 0;

clientPtr->size = 1000000;

clientPtr->type = MODE_NULL;

Message *timerMsg = GLOMO_MsgAlloc(nodePtr, GLOMO_APP_LAYER,

APP_JISTBENCH, MSG_APP_TimerExpired);

GLOMO_MsgSend(nodePtr, timerMsg, 0);

}

void benchFinalize(GlomoNode *nodePtr, app_t *clientPtr) {

// finalization code

}

void benchProcess(GlomoNode *nodePtr, Message *msg) {

switch (msg->eventType) {

case MSG_APP_TimerExpired: {

app_t *clientPtr = getApp(nodePtr);

clientPtr->n++;

if (clientPtr->n < clientPtr->size) {

Message *timerMsg;

timerMsg = GLOMO_MsgAlloc(nodePtr, GLOMO_APP_LAYER,

APP_JISTBENCH, MSG_APP_TimerExpired);

switch (clientPtr->type) {

case MODE_NULL:

GLOMO_MsgSend(nodePtr, timerMsg, 1);

break ;

default : // error

}

}

break ;

}

default : // error

}

if (msg->info) free(msg->info);

GLOMO_MsgFree(nodePtr, msg);

}

D. ns2-C
ns2.h

#include <tclcl.h>

#include "object.h"

class JistBenchEvents : public NsObject {

protected :

double events_;

public :

JistBenchEvents();

void handle(Event* e);

void schedulefirst();

double events() { return events_; }

protected :

int command(int argc, const char *const * argv);

};

ns2.cc
#include "jist.h"

#include "scheduler.h"

#include "ns2.h"

static class JistBenchEventsClass : public TclClass {

public :

JistBenchEventsClass() : TclClass("JistBenchEvents") { }

TclObject* create(int argc, char ** argv) {

return (new JistBenchEvents);

}

} class_jist_bench_events;

JistBenchEvents::JistBenchEvents() {

bind("events_", &events_);

}

int JistBenchEvents::command(int argc, char ** argv) {

if (argc==2) {

if (strcmp(argv[1], "schedulefirst")==0) {

schedulefirst();

return TCL_OK;

}

}

return TclObject::command(argc, argv);

}

void JistBenchEvents::schedulefirst() {

Scheduler& s = Scheduler::instance();

Event *ev = new Event;

s.schedule(this , ev, 0);

}

void JistBenchEvents::handle(Event* ev) {

delete ev;

if (events_) {

Scheduler& s = Scheduler::instance();

ev = new Event;

s.schedule(this , ev, 1);

events_--;

}

}

ns2.tcl
JistBenchEvents set events_ 0

JistBenchEvents set debug_ 0

set s [new Simulator]

set foo [new JistBenchEvents]

$foo set events_ 1000000

$foo schedulefirst

$s run

