
JiST– Java in Simulation Time

User Guide and Tutorial

Rimon Barr
barr@cs.cornell.edu

Introduction

Discrete-event simulators are important scientific tools, and the focus of a vast body of computer science research

that is directed at their efficient design and execution. The JiST system, which stands forJavain SimulationTime,

follows a long line of simulation frameworks, languages and systems. JiST is a new Java-based discrete-event

simulation engine, with a number of novel and unique design features. The purpose of this document is to expose

those features with examples, to describe the overall functioning of the system, and to leave the reader with an

understanding of how to use JiST to construct efficient, robust and scalable simulations.

Architecture

The JiST system architecture, depicted in Figure 1, consists of four distinct components: a compiler, a bytecode

rewriter, a simulation kernel and a virtual machine. One writes JiST simulation programs in plain, unmodified Java,

and compiles them to bytecode using a regular Java language compiler. These compiled classes are then modified,

via a bytecode-level rewriter, to run over a simulation kernel and to support thesimulation timesemantics described

shortly. The simulation program, the rewriter and the JiST kernel are all written in pure Java. Thus, this entire

process occurs within a standard, unmodified Java virtual machine (JVM).

The benefits of this approach are numerous. Embedding the simulation semantics within the Java language

allows us to reuse a large body of work, including the Java language itself, its standard libraries and existing com-

pilers. JiST benefits from the automatic garbage collection, type-safety, reflection and many other properties of the

Java language. This approach also lowers the learning curve for users and facilitates the reuse of code for building

simulations. The use of a standard virtual machine provides an efficient, highly-optimized and portable execution

platform, and allows for important cross-layer optimization between the simulation kernel and running simulation.

Furthermore, since the kernel and simulation are both running within the same process space we reduce serialization

and context switching overheads. In summary, a key benefit of the JiST approach is that it allows for the efficient

execution of simulation programs, within the context of a modern, popular language. JiST combines simulation

semantics, found in custom simulation languages and simulation libraries, with modern language capabilities. This

design results in a system that is convenient to use, robust and efficient.
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Figure 1: The JiST system architecture – simulations are compiled (1), then dynamically instrumented by the rewriter
(2) and finally executed (3). The compiler and virtual machine are standard Java language components. Simulation
time semantics are introduced by the rewriting classloader and supported at runtime by the Java-based simulation
kernel.

Hello world

We begin with a customary example of a JiST program: the ‘Hello World!’ of simulations, listed in Figure 2. The first

thing to note is that this is a valid Java program. You can compile it with a Java compiler:javac hello.java ;

and run it as a regular Java program:java hello . Scanning the source listing, you should also notice the repeated

use of theJistAPI , on lines 3, 14 and 17. ThisJistAPI class represents the application interface exposed by

the simulation kernel. Of course, if we run ourhello program without the JiST runtime, simply under a regular

Java runtime, there will be no active simulation kernel. In this case, the entireJistAPI acts as a dummy class

that merely facilitates type-safe execution: theEntity interface is empty, thesleep call does nothing and the

getTime function returns zero. In fact, the correct way to think about theJistAPI is that it marks the program

source in a manner that both respects Java syntax and is preserved through the compilation process. It allows type-

safe compilation of JiST simulation programs using a conventional Java compiler.

However, when we run ourhello simulation under JiST:java jist.runtime.Main hello , we will

have a simulation kernel loaded and running. Among other things, this kernel installs a class loader into the JVM,

which dynamically rewrites ourhello bytecode as it is loaded. The variousJistAPI markings within the

compiled simulation program serve to direct the code transformations that introduce the simulation time seman-

tics into the bytecode. The entire JiST functionality is exposed to the simulation developer in this manner, via

jist.runtime.JistAPI .

Now, returning to ourhello example, you will notice that the call tomyEvent on line 15 is recursive. Running

the program on its own, without the JiST runtime, will produce a stack overflow, as expected, on exactly that line.
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hello.java
1 import jist.runtime.JistAPI;

2
3 class hello implements JistAPI. Entity

4 {

5 public static void main(String[] args)

6 {

7 System.out.println("simulation start");

8 hello h = new hello();

9 h. myEvent ();

10 }

11
12 public void myEvent()

13 {

14 JistAPI. sleep (1);

15 myEvent ();

16 System.out.println("hello world, t="

17 +JistAPI. getTime ());

18 }

19 }

Figure 2: The simplest of simulations consists of a single entity that emits a message at each time step.

However, executing the same application under JiST produces the output:
> simulation start

> hello world, t=1

> hello world, t=2

> etc.

In essence, our method call has been transformed into a simulation event on thehello entity. It is scheduled

and invoked by the simulation kernel insimulation time. Note, also, thathello is an entity, not a regular object,

since it implements theJistAPI.Entity interface. You may also observe, from the output, that thesleep

serves to advance the simulation time of the system. And, clearly, there is no stack overflow. Thus, although we

reuse the Java language, as well as its compiler and virtual machine, we extend the object model of the language and

execution semantics of the virtual machine, so that simulation programs will run in simulation time.

Simulation time

The standard Java virtual machine is a stack-based Java byte-code execution engine with well-defined execution

semantics [6]. In this standard execution model, which we refer to asactual timeexecution, the passing of time is

not dependent on the progress of the application. In other words, the system clock advances regardless of how many

byte-code instructions are processed. Also, the program can advance at a variable rate, since it depends not only

on processor speed, but also on other unpredictable things, such as interrupts and application inputs. Moreover, the

JVM certainly does not make strong guarantees regarding timely program progress: it may decide, for example, to

perform garbage collection at any point.
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To solve such problems, much research has been devoted to executing applications inreal timeor with more

predictable performance models, wherein the runtime can guarantee that instructions or sets of instructions will

meet given deadlines. Thus, the rate of application progress is made dependent on the passing of time.

In JiST, the opposite is true: that is, the progress of time depends on the progress of the application. The appli-

cation clock, which represents simulation time, does not advance to the next discrete time point until all processing

for the current, discrete simulation time has been completed.

In simulation timeexecution, individual primitive application byte-code instructions are processed sequentially,

following the standard Java control flow semantics, but the application time remains unchanged. Application code

can advance time only via thesleep( n) system call. In essence, every instruction takes zero time to process

exceptsleep , which advances the simulation clock forward by exactlyn simulated time quanta. The JiST runtime

processes an application in its simulation-temporal order until all the events are exhausted or until a pre-determined

ending time is reached, whichever comes first. We summarize these different execution models in Table 1.

actual time - program progress and time are independent
real time - program progress depends on time

simulation time - time depends on program progress

Table 1: Relationship between progress progress and time under different execution models

Object model and execution semantics

JiST simulation programs are written in plain Java, an object-oriented language. As in any object-oriented language

the entire simulation program comprises numerous classes that collectively implement the logic of the simulation

model. During its execution, the state of the program is contained entirely within individual objects. These objects

communicate by passing messages, which are represented as object method invocations in the language.

In order to facilitate the design of simulations, JiST extends this traditional programming model with the

notion of simulationentities. Programmatically, entities are defined as instances of classes that implement the

JistAPI.Entity interface. Although entities are regular objects to the JVM, they serve to logically encapsulate

application objects, as shown in Figure 3, and demarcate independent simulation components. Thus, every object

should be logically contained within an entity. Conversely, the state of an entity is the combined state of all the

objects reachable from it.

To enforce this strict partitioning of a simulation into entities, and prevent object communication across entity

boundaries, each (mutable) object in the system must belong to a single entity and must be entirely encapsulated

within it. In Java, this merely means that all references to an object must originate either directly or indirectly from

a single entity. This condition suffices to ensure simulation partitioning, since Java is a safe language.

The JiST kernel manages a simulation at the granularity of its entities. Instructions and method invocations

within an entity follow the regular Java control flow and semantics, entirely opaque to the JiST infrastructure. The

vast majority of this code is involved with encoding the logic of the simulation model and is entirely unconnected

to the notion of simulation time. All the standard Java class libraries are available and behave as expected. In

addition, the simulation developer has access to a few basic JiST primitives, including functions such asgetTime

andsleep , which allow for interactions with the simulation kernel.
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Figure 3: Simulation programs are partitioned into entities along object boundaries. Thus, entities do not share any
application state and can independently progress through simulation time between interactions.

In contrast, invocationsacrossentities are executed in simulation time. This means that the invocation is per-

formed on the callee (or target) entity when its state is at the same simulation time as the calling (or source) entity. In

this manner, simulation events are intuitively represented as method invocations across entities. This is a convenient

abstraction in that it eliminates the need for an explicit simulation event queue. The execution semantics are that

method invocations on entities are non-blocking. They are merely queued at their point of invocation, not invoked.

It is the JiST kernel that actually runs the event loop, which processes the simulation events, invoking the appro-

priate method for each event dequeued in its simulation time order, and executing the event to completion without

continuation. In other words, cross-entity method invocations act as synchronization points in simulation time. Or,

from a language-oriented perspective, an entity method is like a coroutine, albeit scheduled in simulation time.

A complete separation of entities, as discussed above, is not possible without an additional consideration. That

is, in order to invoke a method on another entity – to send it an event – the caller entitymusthold some kind of

reference to the target entity, as depicted in Figure 4. We, therefore, distinguish between object references and entity

references, and expand on the constraints stated above. All references to a given (mutable) object must originate

from within the same entity. However, references to entities are free to originate from any entity. The rationale is that

object references imply inclusion within the state of an entity, whereas entity references represent channels along

which simulation events are transmitted. As a direct consequence, entities do not nest, just as regular Java objects

do not.

We reintroduce the separation of entities at runtime, by transparently replacing all entity references within the

simulation bytecode with special objects, calledseparators, as shown on the right of Figure 4. The separator object

identifies a particular entity, but without referencing it directly. Rather, separators store a unique entity identifier that

is generated by the kernel for each entity during its initialization. Separators can be held in local variables, stored in

fields or objects or passed as method parameters, just like the regular object references that they replace. Since the

replacement occurs across the entire simulation bytecode, it remains type-safe.

Due to this imposed separation, we guarantee that interactions among entities canonlyoccur via the JiST kernel.

Furthermore, since entities do not share any application state, each entity may actually progress through simulation
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Figure 4: At runtime, entity references are transparently replaced with separators. This both preserves the separation
of entity state, and also serves as a convenient point to insert additional functionality. For example, separators can
provide the abstraction of a single system by tracking the location of remote entities and relaying events to them.

time independently between interactions. The separators, in effect, represent an application state-time boundary

around each entity, similar to a TimeWarp [5] process but at finer granularity. Thus, by tracking the simulation

time of each individual entity, these separators allow for concurrent execution. By adding the ability to checkpoint

entities, via Java serialization, for example, the system can support speculative execution as well. Finally, separators

also provide a convenient point for the distribution of entities across multiple machines. In a distributed simulation,

the separators function also as remote stubs, and transparently maintain a convenient abstraction of a single system

image. Separators transparently store and track the location of entities as they migrate among machines in response

to fluctuating processor, memory and network loads.

The role of the simulation developer, then, is to codify the simulation model in regular Java, and to partition the

state of the simulation not only into objects, but also into a set of independent entities along reasonable application

boundaries. The JiST infrastructure will transparently execute the program efficiently, while retaining the simulation

time semantics.

Simulation time invocation

To illustrate the extended JiST object model and simulation time invocation, we return to ourhello program and

describe its execution step-by-step. Omitting unnecessary complexity in the interests of clarity, below are the basic

operations that occur when one executes:java jist.runtime.Main hello .

• The JVM is loaded and initialized.

• The JiST simulation kernel is loaded into the JVM and initialized. Among other activities, a dynamic class

loader is installed, so that JiST verification and rewriting of application occurs on demand.
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• The kernel creates an anonymous, bootstrap simulation entity. The kernel then creates and enqueues a boot-

strap simulation event at timet = 0, which will invoke the simulation program’smain method with any

command-line arguments, when the simulation event loop begins.

• The kernel enters the simulation event loop and ourhello simulation begins.

• Process the bootstrap event at timet = 0:

– Line 7: Output‘‘simulation start’’ .

– Line 8: Create and initialize a new instance ofhello . Note thathello is anentity, not a regular object,

because it implements theJistAPI.Entity interface on line 3. Thus, at runtime, local variableh

will actually contain a separator object.

– Line 9: Perform a simulation time invocation ofmyEvent . In other words,schedulean event at the

current local simulation timet = 0 to invokemyEvent on the entity referenced byh.

– End of event.

• Process themyEvent event at timet = 0.

– Line 14: Advance the local simulation time by one time quantum tot = 1.

– Line 15: Perform a simulation time invocation ofmyEvent . That is,schedulean event at current local

simulation timet = 1 to invokemyEvent on the current entity.

– Line 16: Emit the‘‘hello world’’ message, with the current local simulation time.

– End of event.

• Process the next scheduledmyEvent event at timet = 1, 2, 3, · · · , as above.

There are a number of additional observations to make regarding the execution of our primitive simulation

program. Note, for example, that there is no mention of concurrency. In fact, there may be multiple threads that share

the simulation event queue and execute the events in parallel. The JiST kernel, however, does guarantee that events

are atomic. Thus, events on the same entity are executed to completion without interruption. Entity invocations do

not interrupt event processing; the invocation is merely enqueued. Also, other events may not interrupt processing,

even during asleep call. Thesleep merely advances thelocal simulation clock. For instance, take two events

t1 andt2, at timest = 1 andt = 2, respectively. Assume that the first event, during the course of its execution,

callssleep for 3 time quanta. Nevertheless,t2 will be invoked only aftert1 processing is complete. In effect, the

sleep call is used for scheduling outgoing invocations with delay, but not for delaying internal operations. Thus,

all operations on the state of an entity occur atomically, at the simulation time of the current event.

There are also some intricacies with respect to the extended object model. For instance, only invocations on

publicmethods of entities are rewritten into event dispatches. While there are technical motivations for this decision

that stem from the Java bytecode semantics, it also matches conceptually with the general Java design. An entity

represents an event-based interface around some internal state. This external interface, as with regular Java objects,

is considered to be the set of public methods. Non-public methods are considered to be regular object methods,

not entity methods, and have the regular Java invocation semantics. Furthermore, since entity method invocations

are event-based, they are performed without continuation. Consequently, there can be no continuation defined. In

other words, public entity methods must returnvoid and can not statically declare any throwable exceptions. If,

at runtime, an exception nevertheless occurs and escapes outside the boundary of an entity to the kernel event loop,
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then the system will immediately terminate the faulty simulation. For a similar reason, entities may not expose

public fields. Specifically, a remote field access is equivalent to an accessor method, with a non-void return type.

Likewise, static fields represent state shared across entities, and are disallowed. Finally, entity constructors are

treated specially. They instantiate the desired entity, but return a separator object referencing the newly created

entity, in place of the object itself. In fact, it is not the constructor that is actually modified, rather the constructor

calling-point right after a correspondingnew instruction.

Finally, while the semantics of simulation time invocation are sufficient to use the system, it is important to

understand the underlying implementation of simulation time invocation, at least at a high level. The simulation

time invocations are introduced by the rewriter, which inspects all method invocation instructions to find invocations

on targets that are entities. At this program location, the stack will contain the target reference (in fact, the separator

object), and any arguments. The rewriter inserts bytecode instructions to pack the arguments into an object array,

and to rearrange the stack to hold three items: the target, a method reflection object, and the invocation argument

array. The invocation instruction is then converted into a call to the simulation kernel, which creates and schedules

a simulation event with this information. For performance, method reflection objects are pre-generated statically,

object arrays are pooled to avoid object instantiation as are the event objects, the expensive Java reflection access

checks are performed once and then safely disabled, and synchronization locks are escalated, wherever possible.

Unfortunately, the Java type system and reflection interface forces us to wrap primitive types in their object coun-

terparts to be placed in the argument array, which incurs a small, but notable overhead. It would be nice to have

the JVM extended to support the efficient “boxing” of primitive types, as in the CLR. Simulation developers may

wish to note this fact and pass along objects instead of primitives, but only when this can be achieved without an

additional object instantiation.

Timeless objects

Having exhausted ourhello simulation and discussed the central notion of simulation time invocation, we now

introduce more advanced JiST features and add complexities to the basic model. Our first extension is the notion

of timelessobjects, introduced purely for reasons of performance. A timeless object is defined as one that will not

change over time. Knowing that a value is temporally stable, allows the system to safely pass it across entities by

reference, rather than by copy.

The system may be able to infer that an object is open-world immutable, through static analysis, and automati-

cally add the timeless labels. In some cases, the analysis can be overly conservative due to restrictions of the Java

type system. The programmer can then explicitly define an object to be timeless, by tagging the object with the

emptyJistAPI.Timeless interface. This tag implies that the object will not be modified in the simulation’s

future, even though it technically could be.

The timeless tag may also be useful for sharing state among entities in an effort to reduce simulation memory

consumption, as depicted in Figure 5. This facility should be exercised with care. Since entities may progress at

different rates through simulation time, any shared statemustactually be timeless. Objects with temporally unstable

values shared across entities will create temporal inconsistencies in the state of the simulation. Conversely, the

simulation developer should be aware that non-timeless objects are passed across entities by copy. Thus, it is not
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Figure 5: Objects passed across entities should be timeless – in other words, should hold temporally stable values
– to prevent temporal inconsistencies in the simulation state. Sharing timeless objects among entities is an effective
way to conserve simulation memory.

possible to transmit information back to the caller using an object parameter in an event. Two separate events should

be used instead.

Proxy entities

Entities encapsulate state and present an event-oriented interface encoded as methods. However, methods also

represent regular Java invocations on objects. The developer of an entity class must, therefore, remember that public

methods are invoked in simulation time while non-public methods are regular invocations, that only non-public and

non-static fields are allowed, etc. This can be confusing, and it imposes restrictions on the developer and can lead to

awkward coding practices within entity classes. In other words, there exists a clash of functionality between entity

and object invocation semantics at the syntactic level.

To address this issue, we introduceproxy entities. As their name implies, proxy entities exist only to relay

incoming events onto a target object. As with any entity method invocation, there are still two phases: event dispatch

and event delivery. And, even though the internal mechanisms used for both event dispatch and delivery of proxied

invocations may be totally different from regular entity invocations, there are no syntactic differences visible to the

developer. Furthermore, the performance is equivalent.

Proxies are created via theproxy API call, which accepts two parameters. The first parameter is the proxy

target, and can be one of three types: an entity, a regular object or aproxiableobject. The proxying of each of the

three possible target types is illustrated in Figure 6, and described below. The second parameter to the system call is

the proxy interface, indicating the methods that are to be exposed and relayed to the target. Clearly, the proxy target

must implement the proxy interface, and this is also verified by the system.

• regular object proxy: Regular objects do not contain the machinery to receive events from the system. They

need to be contained within entities. Therefore, we proxy an object by creating a new entity, which implements

the given interface and relays methods to the given target object. In other words, we wrap the object, and all

objects reachable from it, with a new entity.
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Figure 6: Proxy entities use an interface-based approach to identify entity methods, thus simplifying the development
of entities. The proxy system call behavior corresponds to the type of object passed to it.

Note that this approach inserts the overhead of an additional method invocation into the event delivery process.

Note also that if one invokes theproxycall twice on the same object, the result is two new entities that share

that object in their state, as well as all those reachable from it. We can, however, eliminate this indirection

through the use ofproxiableobjects.

• proxiable object proxy: A proxiable object is any object that implements theJistAPI.Proxiable in-

terface. This interface, like theJistAPI.Entity interface, is empty and serves only as a marker to the

rewriter. The effect of this tag is to introduce the necessary machinery required to receive events from the

kernel. In this manner, the extra method call overhead of an intermediate relaying entity is eliminated, so this

approach is always preferred over proxying regular objects, when source code is available. It merely requires

the addition of a proxiable tag to the target.

• entity proxy: Finally, the last kind of object that we can proxy is an existing entity. An entity already includes

all the machinery required to receive and process events. Thus, the event delivery path is unchanged. However,

theproxy call does serve an important function on the dispatch side. The result of theproxy call, in this

and in all the cases above as well, is a new separator object that implements and relaysonly the methods

of specified interface. Thus, the system call serves to restrict the events allowed from a particular source.

One should consider a proxy separator to be acapability (in the systems sense), since it is unforgeable: the

separator can not be cast to other interfaces at runtime.

Proxy entities simplify development. They allow an object the flexibility of combining both event-driven and

regular method invocation, without loss of performance. They are interface-based, so they do not interfere with the

object hierarchy. And, they allow for a capability-like isolation of functionality, which is useful in larger simulation

programs. Finally, although the proxy separators are completely different in implementation, they behave in the

same way as regular separators, both in terms of execution semantics and performance.

The code listing in Figure 7 shows how to use proxy entities with a basic example, similar to the earlierhello

example. Note thatmyEntity is proxiable, because it implements themyInterface on line 10, which inherits

JistAPI.Proxiable on line 5. The proxy separator is defined on line 13 using theJistAPI.proxy call with
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proxy.java
1 import jist.runtime.JistAPI;

2
3 public class proxy

4 {

5 public static interface myInterface extends JistAPI. Proxiable

6 {

7 void myEvent();

8 }

9
10 public static class myEntity implements myInterface

11 {

12 private myInterface proxy =

13 (myInterface)JistAPI. proxy ( this , myInterface . class );

14 public myInterface getProxy() { return proxy; }

15
16 public void myEvent()

17 {

18 JistAPI.sleep(1);

19 proxy.myEvent();

20 System.out.println("myEvent at t="+JistAPI.getTime());

21 }

22 }

23
24 public static void main(String args[])

25 {

26 myInterface e = ( new myEntity()).getProxy();

27 e.myEvent();

28 }

29 }

Figure 7: An example illustrating a simple use of proxy entities.

the target proxiable instance and appropriate interface class. The invocations on this proxy, on lines 19 and 27, occur

in simulation time.

Reflection

An important consideration in the design of many popular simulators is configurability, and the desire is to reuse

the same simulation code for many different experiments. A few design approaches are possible. The first is

source-level reuse. This approach involves the recompilation of the simulation program before each run with hard-

coded simulation parameters and possibly also with a small driver program for simulation initialization. While

the source-based approach is flexible and also runs efficiently, it is cumbersome to require recompilation on each

run. A second approach is to use a configuration file that is parsed by a more sophisticated driver program as it

initializes the simulation. This eliminates the need for recompilation in many circumstances, but it it is a brittle and

inflexible option, since it is limited to pre-defined configuration options. A third approach is to integrate a scripting

language into the simulation for purposes of configuration, an approach championed by ns2. The scripting language

interpreter – Tcl, in the case of ns2, – is backed by the compiled simulation runtime, so that script variables are linked
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Figure 8: JiST can easily provide multiple scripting interfaces to configure its simulations without source modifica-
tion, memory overhead, or loss of performance. (1) As before, the simulation classes are loaded and rewritten on
demand. (2) The script engine configures the simulation, using reflection, and may even dynamically compile the
script to bytecode for performance. (3) The simulation then runs, as before, interacting with the kernel as necessary.

to simulation values. The script is used to instantiate and initialize the various pre-defined simulation components.

This is an attractive, flexible approach, since it allows the simulation to be configured with a script.

Unfortunately, the linkage between the compiled simulation components and the interpreted simulation config-

uration scripts is difficult to establish. It is achieved manually via a programming pattern calledsplit objects, which

requires interface functions that channel information in objects within the compiled space to and from objects in the

interpreted space. This not only clutters the core simulation code, but it is also inefficient in that it duplicates infor-

mation within the process memory. Furthermore, the script performance depends heavily on these interfaces. The

choice of binding ns2 with Tcl, for example, requires excessive string manipulation, and leads to long configuration

times.

In contrast, the scripting functionality comes “for free” in JiST. It does not requireany additional code in the

simulation components. It does not incurany additional memory overhead. And, the script can configure a sim-

ulation just as quickly as a custom driver program. This is all possible because Java is a dynamic language that

supports reflection. A script engine can query and update simulation values by reflection, and can also dynamically

pre-compile the driver script directly to bytecode for efficient execution. As illustrated in Figure 8, the access that

the script engine has to the simulation state is just as efficient and expressive as the compiled driver program.

A number of robust Java scripting engines already exist. JiST supports the BeanShell engine, with its Java syntax,

and also the Jython engine, which interprets Python scripts. If desired, other engines, such as Bistro (Smalltalk), Jacl

(Tcl), JRuby (Ruby), Kawa (Scheme), Rhino (JavaScript) or a custom simulation definition language interpreter can

easily be integrated as well, and they can even co-exist.
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hello.bsh
1 System.out.println("starting simulation from BeanShell script!");

2 import jist.minisim.hello;

3 hello h = new hello();

4 h.myEvent();

hello.jpy
1 print ’starting simulation from Jython script!’

2 import jist.minisim.hello as hello

3 h = hello()

4 h.myEvent()

Figure 9: Basic example of BeanShell and Jython script-based simulation drivers. One can use Java-based scripting
languages to configure and initialize simulations from existing components.

As is the case with compiled driver programs, the driver script is invoked within its host script engine by the

JiST kernel. The script is the first, bootstrap event of the simulation. In addition, this functionality is exposed via the

JistAPI , so that even simulation programs can embed configuration scripts that are specific to those simulations.

For example, a wireless network simulator written atop JiST, called SWANS and described later, uses scripts to

configure network topology and node protocol stacks.

Tight event coupling

Encoding an event-dispatch as a method invocation has a number of additional benefits, which cansignificantly

reduce the amount of simulation code required, as well as improve its clarity, without affecting runtime performance.

These benefits are summarized in Table 2. The first benefit of this encoding is type-safety, which eliminates a

common source of error: the source and target of an event are statically checked by the Java compiler. The event type

information is also managed automatically at runtime, which completely eliminates the many event type constants

and associated event type-cast code that is otherwise required. A third benefit is that marshalling of event parameters

is performed automatically. In contrast, simulators written against event-driven libraries often require a large number

of event structures and much code to simply pack and unpack parameters from these structures. Finally, debugging

event-driven simulators can be onerous, because simulation events arrive at target entities from the simulation queue

without context. Thus, it can be difficult to determine the cause of a faulty or unexpected incoming event. In JiST, an

event can automatically carry its context information: the point of dispatch (with line numbers, if source information

is available) as well as the state of the source entity. These contexts can then be chained to form an event causality

trace, the equivalent of a stack trace, which may be helpful in debugging. For performance reasons, this information

is collected only in JiST’s debug mode.

The tight coupling of event dispatch and delivery in the form of a method invocation also has important per-

formance implications. Tight event-loops, which can be determined only at runtime, can be dynamically optimized

across the kernel-simulation boundary. The tight coupling also abstracts the simulation event queue behind sim-

ulation time semantics. This, in turn, allows the JiST runtime to execute the simulation efficiently – in parallel

and optimistically – without requiring any modifications to the simulation code. Also the distribution of simulation

entities across different machines can occur transparently with respect to the running simulation.
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type safety - source and target of event statically checked by compiler
event typing - not required; events automatically type-cast as they are dequeued

event structures - not required; event parameters automatically marshalled
debugging - event dispatch location and state available
execution - transparently allows for parallel, optimistic and distributed execution

Table 2: Benefits of tight event coupling achieved through simulation time method invocations

Continuations

Up to this point, we have described how entity method invocations can be used to model simulation events. This

facility provides us with all the functionality of an explicit event queue, which is all that many existing simulators

use, plus the ability to transparently execute the simulation more efficiently. However, it remains cumbersome to

model simulationprocesses, since they must be written as event-driven state machines. While many entities, such

as network protocols or routing algorithms, naturally take this event-oriented form, other kinds of entities do not.

For example, an entity that models a file-transfer is more readily encoded as a process than as a sequence of events.

Specifically, one would rather use a tight loop around a blocking send routine than dispatchsendevents to some

transport entity, which will eventually dispatchsend-completeevents in return. To that end, we introducesimulation

time continuations.

In order to invoke an entity method with continuation, the simulation developer merely needs to declare that a

given entity method isblocking. Syntactically, an entity method is blocking if and only if it declares that it throws a

JistAPI.Continuation exception. This exception is not actually thrown. It acts merely as a method tag, and

as an indication to the JiST rewriter. Moreover, it need not be explicitly declared further up the call-chain, since it is

a sub-class ofError , the root of an implicit exception hierarchy.

The semantics of a blocking entity method invocation, as shown in Figure 10, are a natural extension atop the

existing event-based invocation. We first save the call-stack of the calling entity and attach it to the outgoing event.

When the call event is complete, we notice that it has caller information, so we dispatch a callback event to the caller,

with its continuation information. Thus, when the callback event is eventually dequeued, the state is restored and

execution will continue right after the point of the blocking entity method invocation. In the meantime, however,

the local simulation time has progressed to the simulation time at which the calling event was completed, and other

events may have been processed against the entity.

This approach has a number of advantages. First, it allows blocking and non-blocking entity methods to co-exist.

Methods can arbitrarily be tagged as blocking, and we extend the basic event structure to store the call and callback

information. Secondly, there is no notion of an explicit process. Unlike process-oriented simulation runtime, which

must allocate a fixed stack-space for each real or logical process, the JiST stack space is unified across all its active

entities, reducing memory consumption. The continuation stacks actually exist in the heap along with the events

that contain them, and any objects that they reference. Moreover, our model is actually closer to threading, in that

multiple continuations can exist simultaneously for a single entity. Finally, there is no system context switching

required. The parallelism occurs only in simulation time, so the underlying events may be executed sequentially

within a single thread of control.
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Figure 10: The addition of blocking methods allows simulation developers to regain the simplicity of process-
oriented development. When a blocking entity method is invoked, the continuation state of the current event is
saved and attached to a call event. When this call event is complete, we schedule a callback event to the caller. The
continuation is restored and the caller continues its processing, albeit at a later simulation time.

The code listing in Figure 11 shows an entity with a single blocking method. Notice thatblocking is a

blocking method, since it declares that it may throw aJistAPI.Continuation exception on line 5. Otherwise,

blocking would be a regular entity method, invoked in simulation time. The effect of the blocking tag is best

understood by comparing the output for the program both with and without the blocking semantics, i.e. both with an

without the blocking tag on line 5. Note how the timestamps are affected, in addition to the ordering of the events.

blocking non-blocking
> i=0 t=0

> called at t=0

> i=1 t=1

> called at t=1

> i=2 t=2

> called at t=2

> i=0 t=0

> i=1 t=0

> i=2 t=0

> called at t=0

> called at t=0

> called at t=0

Unfortunately, saving and restoring the call-stack for the purposes of continuation is not a trivial task in Java [10].

The fundamental difficulty arises from the fact that stack manipulations are not supported at either the language,

library or bytecode level. We have implemented and evaluated a number of ways to address this problem. The

specific choice of implementation does not affect the execution semantics of continuations. However, understanding

the underlying implementation may help simulation developers produce more efficient simulations.

Our implementation of continuations draws on ideas in the JavaGoX [11] and PicoThreads [3] projects, which

also need to save the stack, albeit in a radically different context. We introduce an important new idea to these

approaches, which eliminates the need to modify method signatures. This fact is significant, since it allows our

implementation to function even across the standard Java libraries and enables us, for example, to run standard,
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cont.java
1 import jist.runtime.JistAPI;

2
3 public class cont implements JistAPI.Entity

4 {

5 public void blocking() throws JistAPI. Continuation

6 {

7 System.out.println("called at t="+JistAPI.getTime());

8 JistAPI.sleep(1);

9 }

10
11 public static void main(String args[])

12 {

13 cont c = new cont();

14 for ( int i=0; i<3; i++)

15 {

16 System.out.println("i="+i+" t="+JistAPI.getTime());

17 c. blocking ();

18 }

19 }

20 }

Figure 11: A basic entity which illustrates the use of a blocking method.

unmodified Java network applications directly over our wireless simulator. This design also eliminates the use of

exceptions to carry state information and is considerably more efficient for our simulation needs.

Since we are not allowed access to the call-stack in Java, we instead convert parts of the original simulation

program into a continuation-passing style (CPS). The first step is to determine which parts of the simulation code

need to be transformed. For this purpose, the JiST rewriter incrementally produces a call-graph of the simulation

at runtime as it is loaded, and uses the blocking method tags to compute allcontinuablemethods. Continuable

methods are those methods that could exist on a call stack at the point of a blocking entity method invocation. Or,

more precisely, a continuable method is defined recursively as any method that contains:

• anentitymethod invocation instruction, whose target is ablockingmethod; or

• a regularobjectmethod invocation instruction, whose target is acontinuablemethod.

Note that the continuable property does not spread recursively to the entire application, since the second, recursive

half of the continuable definition does not cross entity boundaries.

Each method within the continuable set undergoes a basic CPS transformation, as shown in Figure 12. We

scan the method for continuation points and assign each one aprogram location number. We then perform a data-

flow analysis of the method to determine the types of the local variables and stack slots at that point, and use this

information to generate a custom class that will store the continuation frame of this program location. These classes,

containing properly typed fields for each of the local variables and stack slots in the frame, will be linked together to

form the preserved stack. Finally, we insert both saving and restoration code for each continuation point. The saving

code marshals the stack and locals into the custom frame object, and pushes it onto the event continuation stack via

the kernel. The restoration code does the opposite, and then jumps right back to the point of the blocking invocation.
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Before CPS transform:

1 METHOD continuable:

2
3 instructions

4
5 invocation BLOCKING
6
7 more instructions

After CPS transform:

1 METHOD continuable:

2 if jist.isRestoreMode:

3 jist.popFrame f

4 switch f.pc:

5 case PC1:

6 restoreLocals f.locals

7 restoreStack f.stack

8 goto PC1
9 ...

10
11 instructions

12
13 setPC f.pc, PC1
14 saveLocals f.locals

15 saveStack f.stack

16 PC1:

17 invocation BLOCKING
18 if jist.isSaveMode:

19 jist.pushFrame f

20 return

21
22 more instructions

Figure 12: These pseudocode-bytecode listings show the basic CPS transformation that occurs on all continuable
methods. The transformation instruments the method to allow it to either: a) save and exit, or b) restore and start;
from any continuable invocation location.

All of this must be done in a type-safe manner. This requires special consideration not only for the primitive

types, but also for arrays and null-type values. There are other restrictions that stem from the bytecode semantics.

Specifically, the bytecode verifier will allow uninitialized values on the stack, but not in local variables or fields. The

bytecode verifier will also not allow an initializer (constructor) to be invoked more than once. We eliminate both of

these possibilities by statically verifying that no constructor is continuable.

Finally, the kernel functions as the continuation trampoline, as shown in Figure 13. When the kernel receives a

request to perform a call with continuation, it registers the call information, switches to save mode, and returns to the

caller. The stack then unwinds, and eventually returns to the event loop, at which point the call event is dispatched

with the continuation attached. When the call event is received, it is processed, and a callback event is dispatched in

return with both the continuation and the result attached. Upon receiving this callback event, the kernel switches to

restore mode and invokes the appropriate method. The stack then winds up to its prior state, and the kernel receives

a request for a continuation call yet again. This time, the kernel simply returns the result of the call event, and allows

the event processing to continue from where it left off.

The performance of a blocking call with a short stack is only around 2-3 times slower than two regular events.

Thus, continuations present a viable, efficient way to reclaim process-oriented simulation functionality within an

event-oriented simulation framework.
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Figure 14: A blocking CSP Channel is built using continuations. Other simulation synchronization primitives can
similarly be constructed.

Concurrency primitives

Using continuations, we also can recreate various concurrency primitives in simulation time. As an example, we

construct the Channel primitive from Hoare’s Communicating Sequential Processes (CSP) language [4]. Other

primitives, such as threads, locks, semaphores, barriers, monitors, FIFOs, etc., can readily be built either atop

Channels, or directly within the kernel.

As shown in Figure 14, the CSP channel blocks on the first receive (or send) call and stores the continuation.

When the matching send (or receive) arrives, then the data item is transferred and control returns to both callers.

A JiST channel is created via thecreateChannel system call. It supports both the CSP semantics, as well as

non-blocking sends and receives.

The JiST API

Many of the important kernel functions have already been mentioned. For completeness, we include the full JiST

application interface in Figure 15 and describe it below.
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JistAPI.java
1 package jist.runtime;

2
3 public class JistAPI

4 {

5 public static interface Entity { }

6 public static class Continuation extends Error { }

7 public static interface Timeless { }

8
9 public static long getTime() { ... }

10 public static void sleep( long n) { }

11 public static void end() { }

12 public static void endAt( long t) { }

13
14 public static JistAPI.Entity THIS;

15 public static EntityRef ref(Entity e) { ... }

16
17 public static interface Proxiable { }

18 public static Object proxy(Object proxyTarget, Class proxyInterface) { ... }

19 public static Object proxyMany(Object proxyTarget, Class[] proxyInterface) { ... }

20
21 public static final int RUN_CLASS = 0;

22 public static final int RUN_BSH = 1;

23 public static final int RUN_JPY = 2;

24 public static void run( int type, String name, String[] args, Object properties) { }

25
26 public static Channel createChannel() { ... }

27
28 public static void setSimUnits( long ticks, String name) { }

29
30 public static interface CustomRewriter {

31 JavaClass process(JavaClass jcl);

32 }

33 public static void installRewrite(CustomRewriter rewrite) { }

34 }

Figure 15: The JiST application programming interface is exposed at the language level via theJistAPI object.
The rewriter replaces default noop implementations of the various functions and interfaces with theirsimulation time
equivalents.
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JiST API function explanation

Entity interface tags a simulation object as an entity, which means that invocations

on this object follow simulation time semantics. e.g.jist.swans.

mac.MacEntity .

Continuation exception tags an entity method as blocking, which means that these en-

tity method invocations will be performed in simulation time,

but with continuation. e.g.jist.swans.app.UdpSocket.

receive(DatagramPacket) .

Timelessinterface explicitly tags a simulation object as timeless, which means that it

will not be changed across simulation time and thus need not be

copied when transferred among entities. e.g.jist.swans.node.

Message .

getTime() returns the local simulation time. The local time is the time of the

current event being processed plus any additionalsleep time.

sleep(time) advance the local simulation time.

end() end simulation after the current time-step.

endAt(time) end simulation after given absolute time.

THIS entity self-referencing separator, analogous to Javathis object self-

reference. Should be type-cast before use.

ref(entity) returns a separator of a given entity. All statically detectable en-

tity references are automatically converted into separator stubs by the

rewriter, so this operator should not be needed. It is included only to

deal with rare instances of creating entity types dynamically, and for

completeness.

Proxiable interface an interface used to tag objects that may be proxied. It serves to im-

prove proxying performance by eliminating the need for a relaying

wrapper entity.
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JiST API function explanation

proxy(target, interface) Returns a proxy separator for the given target object and interface

class. The proxying approach depends on whether the target is an

existing entity, a regular object or a proxiable object. The result is an

object whose methods will be relayed to the target in simulation time.

proxyMany(target, interface[]) Same as proxy call, and allows for multiple interfaces.

run(type, name, args, prop) Start a new simulation with given name and arguments at the current

time. The supported simulation loader types are Java applications

(RUN CLASS), BeanShell scripts (RUNBSH), and Jython scripts

(RUN JPY). The properties object carries simulation type-specific in-

formation directly to the simulation loader.

createChannel() Create a new CSP Channel Entity.

setSimUnits(ticks, name) Set the simulation time unit of measure and length in simulation ticks.

The default is 1 tick.

CustomRewriter interface Defines an installable rewriting phase.

installRewriter(rewriter) Installs a custom class rewriting phase at the beginning of the JiST

rewriting machinery. Used for simulation specific rewriting needs.

For example, SWANS uses this interface to rewrite the networking

library calls of applications to operate over the simulated network.

JiST performance

Based on conventional wisdom [1], one would argue against implementing the JiST system in Java, for performance

reasons. In fact, the vast majority of existing simulation systems have been written in C and C++, or their derivatives.

However, JiST actually out-performs the popular ns2 [7] and also the scalable GloMoSim [12] simulators, even on

sequential benchmarks. Aggressive profile-driven optimizations combined with the latest Java runtimes result in a

simulation system that can even match or exceed the performance of the highly-optimized Parsec [2] runtime! In

this section, we present micro-benchmark results comparing JiST against other simulation systems.

The following measurements were taken on a 1133 MHz Intel Pentium III uni-processor machine with 128 MB

of RAM and 512 KB of L2 cache, running the version 2.4.20 stock Redhat 9 Linux kernel with glibc v2.3. We

used the publicly available versions of Java 2 JDK (v1.4.1), Parsec (v1.1.1), GloMoSim (v2.03) and ns2 (v2.26).

Each data point shown represents an average of at least two runs, with deviations of less then 1% in all cases. All
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Figure 16: JiST has higher event throughput, and comes within 20% of the baseline lower bound. The kink in
the JiST curve (at left) in the first fraction of a second of simulation is evidence of JIT compilation at work. The
table (at right) shows the time to perform 5 million events, and also normalized against both the baseline and JiST
performance.

tests were also performed on a second machine – a more powerful and memory rich dual-processor – with identical

absolute memory or relative performance results.

Event throughput

Computational throughput is important for simulation scalability. Thus, in the following experiment, we measured

the performance of each of the simulation engines in performing a tight simulation event loop. We began the

simulations at time zero, with an event scheduled to generate another identical event for the subsequent simulation

time step. We ran each simulation forn simulation time quanta, over a wide range ofn, and measured the actual

time elapsed.

Equivalent, efficient benchmark programs were written in each of the systems. The JiST program looks similar

to the “hello world” program presented earlier. The Parsec program sends null messages among native Parsec

entities using the specialsend andreceive statements. The GloMoSim test considers the overhead of the node

aggregation mechanism built over Parsec, which was developed to reduce the number of entities and save memory for

scalability (discussed shortly). The GloMoSim test is implemented as an application component, that circumvents

the node communication stack. Both the Parsec and GloMoSim tests are compiled using usingpcc -O3 , which

is the most optimized setting. ns2 utilizes a split object model, allowing method invocations from either C or Tcl.

The majority of the performance critical code, such as packet handling, is written in C, leaving mostly configuration

operations for Tcl. However, there remain some important components, such as the mobility model, that depend

on Tcl along the critical path. Consequently, we ran two tests: the ns2-C and ns2-Tcl tests correspond to events

scheduled from either of the languages. ns2 performance lies somewhere between these two, widely divergent

values, depending on how frequently each language is employed for a given simulation. Finally, we developed a
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baseline test to obtain a lower bound on the computation. It is a program, written in C and compiled withgcc -O3 ,

that inserts and removes elements from an efficient implementation of an array-based heap.

The results are plotted in Figure 16. Please note the log-log scale of this and subsequent plots. As expected,

all the simulations run in time linear with respect ton. An unexpected result, since Java is interpreted, is that JiST

out-performs all the other systems, including the compiled ones. It also comes within 20% of the baseline measure

of the lower bound. This is due to the impressive JIT dynamic compilation and optimization capabilities of the

modern Java runtime. The optimizations can actually be seen as a kink in the JiST curve during the first fraction

of a second of simulation. To confirm this, we warmed the JiST test with106 events, and observed that the kink

disappears. The table shows the time taken to perform 5 million events in each of the measured simulation systems,

and these figures normalized against the baseline and the performance of JiST. JiST is twice as fast as both Parsec

and ns2-C. GloMoSim and ns2-Tcl are one and two orders of magnitude slower, respectively.

Message-passing overhead

Alongside event throughput, it is important to ensure that inter-entity message passing scales well with the number

of entities. For simplicity of scheduling, many (inefficient) parallel simulation systems utilize kernel threads or

processes to model entities, which can lead to severe degradation with scale.

The systems that we have considered do not exhibit this problem. ns2 is a sequential simulator, so this issue

does not arise. Parsec, and therefore also GloMoSim, models entities using logical processes implemented in user

space and use an efficient simulation time scheduler. JiST implements entities as concurrent objects and also uses

an efficient simulation time scheduler. The overheads of both Parsec and JiST were empirically measured. They are

both negligible, and do not represent a scalability constraint.

Memory utilization

Another important resource that limits scalability is memory. We, therefore, measured the memory consumed by

entities and by queued events in each of the systems. Measuring the memory footprint of entities involves the

allocation ofn empty entities and observing the size of the operating system process, for a wide range ofn. In the

case of Java, we invoke a garbage collection sweep and then request an internal memory count. Analogously, we

queue a large number of events and observe their memory requirements. The entity and event memory results are

plotted in Figure 17. The base memory footprint of each of the systems is less than 10 MB. Asymptotically, the

process footprint increases linearly with the number of entities or events, as expected.

JiST performs well with respect to memory requirements for simulation entities. It performs comparably with

GloMoSim, which uses node aggregation specifically to reduce Parsec’s memory consumption. A GloMoSim “en-

tity” is merely a heap-allocated object containing an aggregation identifier and an event-scheduling heap. In contrast,

each Parsec entity contains its own program counter and logical process stack, the minimum stack size allowed by

Parsec being 20 KB. In ns2, we allocate the smallest split object possible, an instance ofTclObject , responsible

for binding values across the C and Tcl memory spaces. JiST achieves the same dynamic configuration capability

without requiring the memory overhead of split objects.

JiST also performs well with respect to event memory requirements. Though they store slightly different data,

the C-based ns2 event objects are exactly the same size as JiST events. On the other hand, Tcl-based ns2 events
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Figure 17: JiST allocates entities efficiently (at left): comparable to GloMoSim at 36 bytes per entity, and over an
order of magnitude less that Parsec or ns2. JiST also allocates events efficiently (at right): comparable to ns2 (in C)
at 36 bytes per queued event, and half the size of events in Parsec and GloMoSim. (*) Events scheduled in ns2 via
Tcl will allocate a split object and thereby incur the same memory overhead as above. The table shows per entity
and per event memory overhead, along with the system memory overhead for a simulation scenario of 10,000 nodes,
without including memory for any simulation data. (*) Note that the ns2 split object model will affect its memory
footprint more adversely than other systems when simulation data is added.

require the allocation of a new split object per event, thus incurring the larger memory overhead above. Parsec

events require twice the memory of JiST events.

The memory requirements per entity,mementity, and per event,memevent, in each of the systems are tabulated

in Figure 17. We also compute the memory footprint within each system for a simulation of 10,000 nodes, assuming

approximately 10 entities per node and an average of 5 outstanding events per entity. In other words, we compute:

memsim = 104× (10×mementity +50×memevent). Note that these figures do not include the fixed memory base

for the process, nor the actual simulation data. These are figures for empty entities and events alone, thus showing

theoverheadimposed by each system.

Note also that adding simulation data would doubly affect ns2, since it stores data in both the Tcl and C memory

spaces. Moreover, Tcl encodes this data internally as strings. The exact memory impact thus varies from simulation

to simulation. As a point of reference, regularly published results of a few hundred wireless nodes occupy more

than 100 MB, and simulation researchers have scaled ns2 to around 1,500 non-wireless nodes using a process with

a 2 GB memory footprint [9, 8].
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Advantages of the JiST approach

Aside from performance and scalability, we have mentioned various benefits of the JiST design throughout the

explanations. For reference, we summarize these advantages below.

application-oriented benefits

type safety - source and target of simulation events are statically type-checked by the compiler,

eliminating a large class of errors

event types - numerous constants and the associated type-casting code are not required; events

are implicitly typed

event structures - numerous data structures used to carry event payloads and the associated event

marshalling code can be eliminated; event payloads are implicitly marshalled

debugging - event dispatch location and source entity state are available during event process-

ing; can generate event causality trace to determine the origin of a faulty event

language-oriented benefits

reflection - allows script-based simulation configuration, debugging and tracing in a manner

that is transparent to the simulation implementation

safety - allows for an object-level isolation of state between entities; ensures that all sim-

ulation time calls pass through the kernel; allows sharing of immutable objects;

provides flexibility in entity state aggregation

garbage

collection

- memory for objects with long and variable lifetimes, such as network packets, is

automatically managed; facilitates memory savings through sharing of immutable

objects; avoids memory leaks and the need for complex memory protocols

Java - JiST reuses the standard language, libraries, compiler and runtime

system-oriented benefits

inter-process

communication

- since entities share the same process space, we pass a pointer, and there is no

serialization; there is also no context switch required

Java-based

kernel

- allows cross-layer optimization between kernel and running simulation for faster

event dispatch and system calls

robustness - strict Java verification ensures that simulations will not crash; garbage collection

protects against memory leaks over time

rewriting - operates at the bytecode level; does not require source-code access

concurrency - simulation object model and execution semantics support parallel and optimistic

execution transparently with respect to the application

distribution - provides a single system image abstraction that allows for dynamic entity migra-

tion to balance load, memory or network load
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hardware-oriented benefits

portability - pure Java: “runs everywhere”

cost - runs on COTS clusters (NOW, grid, etc.), as well as more specialized architectures

Scalable Wireless Ad hoc Network Simulator - SWANS

Both as a proof of the JiST approach and as a research tool, we built SWANS, aScalableWirelessAd hocNetwork

Simulator. The SWANS software is organized as groups of software components that can be composed to form

complete wireless simulations, as shown in Figure 18. There are components that implement different types of

applications; networking, routing and media access protocols; radio transmission, reception and noise models; signal

propagation and fading models; and node mobility. Instances of each component class are shown italicized in the

figure.

Every SWANS component is encapsulated as a JiST entity: it stores it own local state, and interacts with other

components via exposed entity interfaces. This pattern simplifies simulation development by reducing the problem

to creating relatively small, event-driven components, which are then hooked up to form complete simulations. It

also restricts state access and the degree of inter-dependence, allowing components to be readily interchanged with

suitable alternate implementations, and for each simulated node to be independently configured.

It is important to note that communication among entities is very efficient. The design incurs no serialization

cost and no copy cost among co-located entities, since these messages are merely Java objects that are passed along

via the simulation time kernel by reference. This facilitates both vertical and horizontal aggregation of simulation

state. The messages themselves are a chain of nested objects that mimic the data encapsulation of the network stack.

This not only saves memory, and memory copies, but also provides an additional convenience in that it allows for

the use of polymorphism in message processing.

The component design also restricts the simulation communication pattern. For example, application or link-

layer components of different nodes do not communicate directly; they can only pass messages along their own node

stacks. Consequently, the elements of the simulated node stack above theRadiolayer become trivially parallelizable,

and may be distributed with low synchronization cost.

In the following sections, we discuss each of the component packages: field, radio, link, routing, network,

transport, application and common. We highlight the more important elements of the implementation. Further detail

should be gleaned directly from the source code and JavaDoc pages.

Field

The SWANS field components are responsible for modeling signal propagation, pathloss and fading, as well as node

mobility. Radios make transmission downcalls to the field, and other radios on the field receive reception upcalls, if

they are within range of the signal. Both the pathloss and fading models are functions that depend on the source and

destination radio locations. Pathloss models include free-space, two-ray and table-driven pathloss. Fading models

include zero, Raleigh and Rician fading.

We have implemented a naı̈ve signal propagation algorithm, which uses a slow,O(n), linear search to determine

the node set within the reception neighborhood of the transmitter. This is equivalent to the ns2 implementation.
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Figure 18: The SWANS simulator consists of event-driven components that can be configured and composed to
form a meaningful wireless network simulation. Different classes of components are shown in a typical arrangement
together with specific instances of component implementations in italics.

SWANS also supports a grid-based algorithm, as in GloMoSim. In addition, we have implemented a more advanced

algorithm that useshierarchicalbinning, an improvement on theflat binning algorithm implemented in GloMoSim

and others.

In the flat binning approach, the field is sub-divided into a grid of node bins. A node location update requires

constant time, since the bins divide the field in a regular manner. The neighborhood search is then performed by

scanning all bins within a given distance from the signal source. While this operation is also of constant time, given

a sufficiently fine grid, the constant is sensitive to the chosen bin size: bin sizes that are too large will capture too

many nodes, and thus not serve their search-pruning purpose; bin sizes that are too small will require the scanning

of many empty bins. The optimal bin size is proportional to the signal propagation radius, however this may change

from radio to radio.

We improve on this approach. Instead of a flat sub-division, the hierarchical binning implementationrecursively

divides the field along both thex andy-axes. The node bins are the leaves of this balanced, spatial decomposition

tree, which is of height equal to the number of divisions, orlog2(field size
bin size ). This is similar to a quad-tree data

structure, except that the division points are not the nodes themselves, but fixed coordinates. As before, updating

a node location requires a constant number of operations, including the maintenance of inner node counts in the

tree. However, this constant – the height of the tree – changes only logarithmically with changes in the bin size.

Furthermore, since nodes move only a short distance between updates, the amortized height of the common parent

of the two affected node bins is 1. The amortized number of inner nodes that require update is, therefore, also

constant. When scanning for node neighbors, empty bins can be pruned as we descend spatially. Thus, the result
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can be computed in proportion to the size of the result. Since we will need to scan the result to propagate the signal,

this is optimal; it will not benefit from function caching.

Finally, the node mobility is implemented as an interface-based discretized model. Upon each node movement,

the model is queried to schedule the next movement. The mobility models that are implemented include static and

random-waypoint.

jist.swans.field.*

interface class description

FieldInterface Field centralized node container that performs mobility and sig-

nal propagation with fading and pathloss

Fading Fading.None zero fading model

Fading.Raleigh Raleigh fading model

Fading.Rician Rician fading model

Pathloss Pathloss.FreeSpace pathloss model based purely on distance

Pathloss.TwoRay pathloss model that incorporates ground reflection

Spatial Spatial.Linear signal propagation and location update performed via

linked list of radios

Spatial.Grid as above, but performed using a more efficient flat grid

structure of small “Linear” bins

Spatial.HierGrid as above, but performed using a more consistently efficient

hierarchical grid structure

Placement Placement.Random uniformly random initial node placement

Mobility Mobility.Static no mobility

...RandomWaypoint random waypoint mobility model

Radio

The SWANS radio receives upcalls from the field entity, and passes successfully received packets on to the link

layer. It also receives downcalls from the link layer entity and passes them on to the field for propagation. We have

implemented an independent interference radio, as in ns2, as well as an additive interference radio, as in GloMoSim.

The independent interference model considers only signals destined for the target radio as interference. The additive

model correctly considers all signals as contributing to the interference. Both radios are half-duplex. Radios are

parameterized by frequency, transmission power, reception sensitivity and threshold, antenna gain, bandwidth and

error model. Error models include bit-error rate and signal-to-noise threshold.

jist.swans.radio.*

interface class description

RadioInterface RadioNoiseIndep interference at radio consists only of other signals above a

threshold that are destined for that same radio

RadioNoiseAdditive interference consists of all signals above a threshold

none RadioInfo unique and shared radio parameters
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Link

The SWANS link layer entity receives upcalls from the radio entity and passes them to the network entity. It also

receives downcalls from the network layer and passes them to the radio entity. The link layer entity is responsible

for the implementation of a chosen medium access protocol, and for encapsulating the network packet in a frame.

Link layer implementations include IEEE 802.11b and a “dumb” protocol. The 802.11b implementation includes

the complete DCF functionality, with retransmission, NAV and backoff functionality. It does not include the PCF

(access-point), fragmentation or frequency hopping functionality found in the specification, which is on par with the

GloMoSim and ns2 implementations. The “dumb” link entity will only transmit a signal if the radio is currently idle.

jist.swans.mac.*

interface class description

MacInterface MacDumb transmits only if transceiver is idle

Mac80211 802.11b implementation

none MacAddress mac address

MacInfo unique and shared mac parameters

Network

The SWANS network entity receives upcalls from the link entity and passes them to the appropriate packet handler,

based on the packet protocol information. The SWANS network entity also receives downcalls from the routing and

transport entities, which it enqueues and eventually passes to the link entity. Thus, the network entity is the nexus of

multiple network interfaces and multiple network packet handlers. The network interfaces are indexed sequentially

from zero. The packet handlers are associated with IETF standard protocol numbers, but are mapped onto a smaller

index space, to conserve memory, through a dynamic protocol mapper that is shared across the entire simulation.

Each network interface is associated with a packet queue, which can handle packet priorities and perform RED.

The packets are dequeued and sent to the appropriate link entity using a token protocol to ensure that only one

packet is transmitted at a time per interface. The network layer sends packets to the routing entity to receive next

hop information, and allows the routing entity to peek at all incoming packets. It also encapsulates message with

the appropriate IP packet header. The network layer uses an IPv4 implementation. Loopback and broadcast are

implemented.

jist.swans.net.*

interface class description

NetInterface NetIp IPv4 implementation

none NetAddress network address

MessageQueue outgoing message queues

Routing

The routing entity recieves upcalls from the network entity with packets that require next-hop information. It also

receives upcalls that allow it to peek at all packets that arrive at a node. It sends downcalls to the network entity with
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next-hop information when it becomes available. SWANS implements the Zone Routing Protocol (ZRP), Dynamic

Source Routing (DSR), and ad hoc On-demand Distance Vector Routing (AODV).

jist.swans.route.*

interface class description

RouteInterface RouteZrp Zone Routing Protocol

RouteDsr Dynamic Source Routing protocol

RouteAodv Ad hoc On-demand Distance Vector routing protocol

Transport

The SWANS transport entity receives upcalls from the network entity with packets of the appropriate network pro-

tocol, and passes them on to the appropriate registered transport protocol handler. It also receives downcalls from

the application entity, which it passes on to the network entity. The two implemented transport protocols are UDP

and TCP, which encapsulate packets with the appropriate packet headers. UDP socket, TCP socket and TCP server

socket implementations actually exist within the application entity. The primary reason for this decision is that

these implementations are modeled after corresponding Java classes, which force the use non-timeless objects. The

DatagramSocket , for example, uses a mutableDatagramPacket to provide data. In all other respects, in-

cluding correctness and performance, this decision, to move the socket implementations into the application entity,

is inconsequential.

SWANS installs a rewriting phase that substitutes identical SWANS socket implementations for the Java equiv-

alents within node application code. This allows existing Java networking applications to be run as-is over the

simulated SWANS network. The SWANS implementations use continuations and a blocking channel in order to im-

plement blocking calls. The entire application is conveniently frozen, for example, at the point that it callsreceive

until its packet arrives through the simulated network. Thus, we have a powerful Java simulation “sandwich”: Java

networking applications running over SWANS, running over JiST, running within the JVM.

There is an interesting complexity in this transformation that is worth mentioning. As discussed previously,

since constructors can not be invoked twice, they may not be continuable. However, certain socket constructors,

such as a TCP socket, have blocking semantics, since they require a connection handshake. We circumvent this

problem by rewriting constructor invocations into two separate invocations. The internal socket implementation has

a non-blocking constructor, which does nothing more than store the initialization arguments, and a second blocking

method that will always be called immediately after the constructor. This second method can safely perform the

required blocking operations.

jist.swans.trans.*

interface class description

TransInterface TransUdp UDP implementation, usually interacts withjist.swans.app.net.

UdpSocket .

TransTcp TCP implementation, usually interacts withjist.swans.app.net.

TcpServerSocket and .TcpSocket and various blocking streams

implementations injist.swans.app.io.*
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Application

At the top of our network stack, we have the application entities, which make downcalls to the transport layer

and receive upcalls from it, usually via SWANS sockets or streams that mimic their Java equivalents. The most

generic, and useful kind of application entity is a harness for regular Java applications. These Java applications

operate within a context that includes the correct underlying transport implementation for the particular node. Thus,

these Java applications can open regular communication sockets, which will actually transmit packets from the

appropriate simulated node, through the simulated network. SWANS implements numerous socket and stream types

in the jist.swans.app.net andjist.swans.app.io packages. Applications can also connect to lower-

level entities. The heartbeat node discovery application, for example, operates at the network layer. It circumvents

the transport layer and communicates directly with the network entity.

jist.swans.app.*

interface class description

AppInterface AppJava versatile application entity that allows regular Java network applica-

tions to be executed within SWANS

AppHeartbeat runs heartbeat protocol for node discovery

item package implementations

socket net UdpSocket, TcpServerSocket, TcpSocket

stream io InputStream, OutputStream, Reader, Writer, InputStreamReader,

OutputStreamWriter, BufferedReader, BufferedWriter

Common

There are various interfaces that are common across a number of SWANS layers and tie the system together. The

most important interface of this kind isMessage. It represents a packet transfered along the network stack, and it

must be timeless (or immutable). Components at various layers define their own message structures. Many of these

instances recursively store messages within their payload, thus forming a message chain that encodes the hierachical

header structure of the message. Other common elements include a node, node location, protocol number mapper,

and miscellaneous utilities.

jist.swans.misc.*

interface package implementations

Message jist.swans.misc MessageBytes, MessageNest

jist.swans.mac Mac80211.RTS, .CTS, .ACK, .DATA, etc.

jist.swans.net NetIp.IpMessage

jist.swans.route RouteZrp.IARP, RouteDsr.RREQ, etc.

jist.swans.trans TransUdp.UdpMessage, TransTcp.TcpMessage, etc.
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Code overview

For readers that intend to work on the project, this section explains the general organization of the codebase. The

software distribution contains the JiST system, small regression test and benchmark simulations, the SWANS com-

ponents, and simulation driver scripts. The software map below contains only the more significant files and is

intended to be a navigational aid. It is correct as of September 2003.

files classes lines

JiST 26 65 9302

minisim 10 22 1494

SWANS 52 113 12716

driver 8 8 862

97 211 24556

src – source code

jist/runtime – JiST simulation framework

rewriting - Rewriter , RewriterFlow , RewriterVerify , ClassTraversal

kernel - Main , Controller

events - Event , EventLocation , Bootstrap , Heap

entities - EntityRef , Entity , ProxyEntity

system calls - JistAPI , JistAPI Impl

distributed - ControllerRemote , Group

jist/minisim – regression and benchmark simulations

jist/swans – wireless ad hoc network simulation components for SWANS

jist/swans/field – signal propagation, fading, pathloss and mobility

jist/swans/radio – radio signal transmission and reception

jist/swans/mac – link layer implementations

jist/swans/net – network layer implementations

jist/swans/route – routing layer implementations

jist/swans/trans – transport layer implementations

jist/swans/app – applications

jist/swans/app/net – application sockets

jist/swans/app/io – application streams

jist/swans/misc – common data structures and utilities

rewriting - Rewriter

runtime - Main

driver – SWANS simulation drivers

bin – execution scripts

lib – required libraries

memprof – aggregating memory profiler

bench – Parsec, GloMoSim and ns2 benchmarks
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