JIST —
Java in Simulation Time

for the

Scalable Simulation of
Mobile Ad hoc Networks

Rimon Barr

<barr@cs.cornell.edu>
Wireless Network Laboratory

Advisor: Prof. Zygmunt J. Haas

19 November 2003

http://www.cs.cornell.edu/barr/repository/jist/

motivation

discrete event simulations are useful and needed
but, most published ad hoc network simulations

e lack network size - ~500 nodes; or 9 /'Q

e compromise detail - packet level; or \ - \g/ G\Q
e curtail duration - few minutes; or .g/ Q \/
o are of sparse density - <10/km?; or ¢

e reduce network traffic
i.e. limited simulation scalability

few packets per node

A university campus

e 30,000 students, < 4 km?, 1 device/student
The United States military

e 100-150,000 troops, clustered around cities
Sensor networks, smart dust, Ubicomp

e Hundreds of thousands of cheap wireless devices
distributed across the environment

JiST — Java in Simulation Time 2

existing wireless simulators

sequential
ns2 is the gold standard GloMoSim
e written in C++ with Tcl bindings ¢ implemented in Parsec, a
e created for TCP simulation, custom C-like language
modified for wireless networks * implements “"node aggregation,”
« processor and memory intensive to conserve memory
 sequential; max. ~500 nodes e shown ~10,000 nodes on NUMA

« recently “fixed” for ~5000 nodes machine (SPARC 1000, est. $300k)

custom-made simulators
o fast, specialized computation
* lack sophisticated execution and

OpNet - popular commercial option
* good modeling capabilities

* poor scalability also credibility
parallel
PDNS - parallel distributed ns2 SWAN
e event loop uses RTI-KIT parallelized and distributed using
« uses fast inter-connect to the DaSSF framework
distribute memory requirements e« similar capabilities to GloMoSim
e shown ~100,000 nodes e shown ~100,000 nodes

rule of thumb: extra 10x in scale,
using at least 10x hardware and cost

JiST — Java in Simulation Time

what is a simulation?

e unstructured simulation: computers compute
o time structured: event-oriented vs. process-oriented

e discrete event simulator is a program that:
e encodes the simulation model
o stores the state of the simulated world
o performs events at discrete simulation times
e loops through a temporally ordered event queue
e works through simulation time as quickly as possible

o desirable properties of a simulator:
e correctness - valid simulation results
o efficiency - performance in terms of throughput and memory

e transparency - write program in a standard language
- implicit optimization, concurrency, distribution,
portability, fault-tolerance, etc.

JiST — Java in Simulation Time

how do we build simulators?

systems languages
e simulation kernels e generic simulation languages
o control scheduling, IPC, clock o introduce entities, messages

e processes run in virtual time
e e.g. TimeWarp OS, Warped

© transparency < efficiency

e simulation libraries

and simulation time semantics

e event and state constraints
allow optimization

e both event and process oriented
e e.g. Simula, Parsec/GloMoSim

e move functionality to user-space - application-specific languages

for performance; monolithic prog.
e usually event-oriented
e e.g. Yansl, Compose, ns2

® transparency < efficiency

e e.g. Apostle, TeD
<& transparency < efficiency

© ¢ new language

virtual machines

JiST — Java in Simulation Time

the jist approach

e JiST — Java in Simulation Time
e converts a virtual machine into a simulation platform
* no new language, no new library, no new runtime

* merges modern language and simulation semantics
» combines systems-based and languages-based approaches

kernel library language JiST
transparent ++ ++ ++
efficient + + ++
standard 4+ ++ ++

JiST — Java in Simulation Time

system architecture

=

Compile simulation with standard Java compiler

2. Run simulation within JiST (within Java); simulation classes are
dynamically rewritten to introduce simulation time semantics:
o extend the Java object model and execution model
o progress of time is dependent on program progress
e instructions take zero (simulation) time
» time explicitly advanced by the program: sl eep(ti ne)

3. Rewritten program interacts with simulation kernel

@ compiler .
. rewriter
(javac)
simulation
kernel

* o 2
CET T 7 virtual
ro y o .
: P | &2 machine
1 |
1

&

- Z
- 7

Jave saurce code

Jave bytecade modified classes

JiST — Java in Simulation Time

jist object model

e program state contained in objects
o objects contained in entities

o think of an entity as a simulation component
e an entity is any class tagged with the Ent | i y interface

e each entity runs at its own simulation time
e as with objects, entities do not share state
e akin to a JKernel process in spirit, but without the threads!

3
¢

object view

simulation state

>o

entity view

v
®
®

. abject

entity |

M

JiST — Java in Simulation Time

jist execution model

e entity methods are an event interface
e simulation time invocation

 non-blocking; invoked at caller entity time; no continuation
e like co-routines, but scheduled in simulation time
o entity references replaced with separators
o event channels; act as state-time boundary
 demarcate a TimeWarp-like process, but at finer granularity

simulation state

)

¥ o
b.. s

D
'o
T'

>o

"F—-_.-

object view

entity view

. abject ’ separator g

ety

JiST — Java in Simulation Time

jist api

e Jist APl class is the JiST kernel system call interface
e permits standard Java compilation and execution

/'l used in hello exanple

interface Entity - tag object as entity
| ong get Ti ne() - return simulation tine
voi d sl eep(long ticks) - advance sinulation tine

/[l others, to be introduced shortly

I nterface Tinel ess - tag object as tineless
I nterface Proxiable - tag object as proxiable
Entity proxy(target, intface) - create proxy entity

cl ass Continuation ext. Error — tag nethod as bl ocki ng

void run(type, nane,args,...) - run programor script

voi d runAt (Runnabl e r) - schedul e procedure

void endAt (long tine) - end sinulation

Channel createChannel () - simulation tinme CSP Channel
void instal|lRewite(rewiter) — install transfornmation
EntityRef THI S - this entity reference
EntityRef ref(Entity e) - reference of an entity

[l ... and nore

JiST — Java in Simulation Time

| %

a basic example

e the “hello world” of event simulations

class HelloWwrld inplenents JistAPI.Entity

{
public void hello()

{
Ji st APl . sl eep(1);
hel | o();
Systemout.printin("hello world, " +
"time=" + JistAPl.getTine());

Stack overflow @ello |hello world,
hel l o worl d,
hel l o worl d,
etc.

ti ne=1
ti ne=2
ti me=3

JiST — Java in Simulation Time

| %

11

SWANS

e Scalable Wireless Ad hoc Network Simulator

e runs standard Java network applications over simulated networks

e can simulate networks of 1,000,000 nodes
sequentially, on a single commodity uni-processor

e runs on top of JiST; SWANS is a JiST application
e uses hierarchical binning for efficient signal propagation
e component-based simulation architecture written in Java

Application LE]
ConstBitRate E
Transport | &
A LIDP]]]]]
p p Network Routing
% IPv4 ZRP
¥} ' ¥) [¥) [¥) L ¥}
(] SWANS MAC E E E E E
-IG; 802.11b
- 1 Radio Mobility

E ‘] I ST [NoiseAdd. Rfma'an'Pr] 4 i

= | ° LY &y Ly 91

v Ficld Ficld

J ava FreespacePathloss—RaleighFading—2D—Field FreespaceRaleigh2D
Field Field
FreespaceRaleigh2D FreespaceRaleigh2D

AL &D AZ AT AT Al
Lol lwl Lo | fo !l ol e
BB e g | BB - 1B
22| 2 | 12| 12 2 |
S S 4 LS S S S S A

JiST — Java in Simulation Time 12

SWANS components

function implementation
application - heartbeat;

any Java network application

transport - UDP; TCP [Tamtoro]
network - IPv4 JiST 25 95 11265 2892
routing - ZRP; DSR [Viglietta]; AODV [Lin] SV&']\'; SZ 1555 1379855 iégg
link - 802.11b ; naive; wired T 200 S O

placement - random ; input file i

mobility - static; random waypoint; input file

files
classes
lines
semi

_ _ [Application L
interference - independent, ns2; | ConstBitRate E
additive, GloMoSim {7
. 0_c i
fading - zero; Raleigh; Rician Tl'ﬂ':ﬂpﬂﬂ J
pathloss - free-space ; two-ray ~ E"%}P
propagation - linear scan, ns2; M Network Routing
algorithm flat binning, GloMoSim; | IPv4 ZRP
hierarchical binning £7
[MAC
| 802.11b
17
Radio Mobility
| NoiseAdd. RandWavPrt.

JiST — Java in Simulation Time 13

SWANS performance

Time for 15 minute NDP simulation

120 o
100 -

80 -

60

time (in minutes)

40

,Z/ """" |
P -€©)- SWANS (scan)
T e £o] -B- GloMoSim
s a -~ ns2
L L

prd
-
-
-
-
-
-
-
-
-
-
prd
Ps
-
.’
-

g 500

| | | | 1
1000 1500 2000 2500 3000 3500 4000 4500 5000
network size (nodes)

e simulation configuration

JiST — Java in Simulation Time

application
field
mobility
radio

stack

- heartbeat neighbor discovery

5x5km?; free-space path loss; zero fading
random waypoint: v=2-5m, p=10s
additive noise; standard power, gain, etc.
802.11b, IPv4, UDP

14

time

SWANS performance

Time for 15 minute NDP simulation

10h, | ‘ —— 1000 ‘
100}
s
2 1097 3
2
£
1}
z G '
-©- SWANS (scan) | 3 L -©- SWANS (scan) |
-8- GloMoSim] O___G__...@--'@ -8- GloMoSim 1
-$- ns2 i -&- ns2 i
‘ .., O SWANS (hier) e, . LZ©- SWANS(hier)
'$00 1000 10000 100000 o 100 1000 10000 100000
network size (nodes) network size (nodes)
t=15m ns?2 GloMoSim SWANS SWANS-hier
nodes|| time memory| time memory| time memory| time memory
500([7136.3 s 58761 KB 81.6s 5759 KB 535s 700 KBl 43.1s 1101 KB
5000 6191.4 s 27570 KB| 3249.6 s 4887 KB| 433.0s 5284 KB
50000 47717 KB|4377.0 s 49262 KB

Memory for NDP simulation

JiST — Java in Simulation Time

1e+06

SWANS performance

JiST — Java in Simulation Time

Time for 2 minute NDP simulation

10h¢
1hE
10m;
o i
E i
1mE
108;
Om- & SWANS (hier) |.
C -©3- SWANS (scan)
1 | Lol L | L LT | |
s10 1072 1073 1004 1075 1076
network size (nodes)
t=2m SWANS-hier

nodes

10,000 100,000 1 million [per node

initial memory
avg. memory
time

13 MB 100 MB 1000 MB| 1.0KB
45 MB 160 MB 1200 MB| 1.2 KB

2m

25 m 55h 20 ms

16

summary

e SWANS scalability

e can simulate million node wireless networks
e hierarchical binning allows linear scaling with network size

e SWANS is a JiST application
e a simulation program written using the “JiST approach”

3

» scalability depends on:
e time — efficient simulation event processing
e space - efficient simulation state encoding

JiST — Java in Simulation Time

17

jist micro-benchmark: event throughput

Simulation event throughput

100 ¢ 5 —
[> 7 9

: A

- e s

- - -
e s /A/ /’,E]
A~ prd . ,
- - - -
- - R - 5

Simulation event throughput

5 7 T T T T I
/ --- reference
asl -6~ JiST (cold) ||
) / -&- Parsec
/ -¢- ns-C

—_ 7 —_
v | - 5
s v~ 8
2 1- 3
K2 ¥ P @2
o b o o
£ " E
A//,
0.1 - . - rt_eference
e -6~ JiST (cold) |7
— JiST (warm) |[;
-&- Parsec
-0~ GloMoSim
Fr -&- ns-C
‘ -w- ns-Tel
0.01) ey — 0 o
0.1 1 o] 100 0 1 2 3 v 5 6 7 8 9 10
of events (in millions) ".,. “c#‘c')f events (in millions)
'..... ““!‘
...'. “‘I
"*45x1076 events | time (sec) vs. reference vs. JiST
reference 0.74 0.76x
JiST 0.97 1.31x
Parsec 1.91 2.59x 1.97x
ns2-C 3.26 4.42x 3.36x
GloMoSim 9.54 12.93x 9.84x
ns2-Tcl 76.56 103.81x 78.97x

JiST — Java in Simulation Time

18

jist micro-benchmark: memory overhead

Simulation entity memory overhead Simulation event memory overhead
1000 ¢ L L L L L aaa 1000 T T Ty T T T T T T T T T T T T
e JisT ;
r| -8~ Parsec /./
| -¢- GloMoSim o
|| -9 ns2 e
a’
100 - P 5 100 - .
’ﬂm: i /‘Z‘/ -~ ’g’: i
g /-/JZ‘/ P - /v g
a N
g P i
5 v e § Oyee- -]
g _,El"/ e 5 [
oy e ___.-e--‘-e‘-‘-“@"" F
g ¢ ¢ ° g n B---& F--E- =]
o [
E E
1 E = 1 :* 3
-0~ JiST]
G ¢ -8~ Parsec/GloMoSim |
-v- ns2*
0.1 I A | vl I———.| Ll L 0.1 Lol | Lol Ll T E——————yl
0.1 1 10 100 1000 0.1 1 10 100 1000 10000
of entities (in thousands) # of queued events (in thousands)
memory | per entity per event [10K nodes sim.
JiST 36 B 36 B 21 MB
GloMoSim 36 B 64 B 35 MB
ns2 * 544 B 40 B 74 MB
Parsec 28536 B 64 B 2885 MB
JiST — Java in Simulation Time 19

benefits of the jist approach

e more than just performance...
e application-oriented benefits

o type safety source and target statically checked

e event types not required (implicit)

o event structures not required (implicit)

e debugging dispatch source location and state available
* language-oriented benefits

e Java standard language, compiler, runtime

e garbage collection cleaner code, memory savings

o reflection script-based simulation configuration

o safety fine grained isolation

e robustness no memory leaks, no crashes
o system-oriented benefits

e IPC no context switch, no serialization, zero-copy

e Java kernel cross-layer optimization

e rewriting no source-code access required

o distribution provides a single system image abstraction

e concurrency model supports parallel and speculative execution
 hardware-oriented benefits

e cost COTS hardware and clusters

o portability runs on everything

JiST — Java in Simulation Time

rewriter

* rewriter properties

dynamic class loader

no source code access required

operates on application packages, not system classes
uses Apache Byte Code Engineering Library (BCEL)
allows orthogonal additions, transformations and optimizations

* rewriting phases

application-specific rewrites
verification

add entity self reference
intercept entity state access
add method stub fields
intercept entity invocations
modify entity creation
modify entity references
modify typed instructions
continuable analysis
continuation transformation
translate JiST API calls

JiST — Java in Simulation Time

@ compiler
4 {javac)

v

il

Javea Bytecade

rewriter

simulation
kernal

virtual
machine

21

zero-copy semantics

o timeless object: a temporally stable object
* inferred statically as open-world immutable
e or tagged explicitly with the Ti nel ess interface

e benefits
o pass-by-reference saves memory copy
» zero-copy semantics for inter-entity communication
e saves memory for common shared objects
» e.g. broadcast network packets
» rewrite new of common types to hashcons

. ohject r ;
’ separator ’ 0’ N
o | L@IYPY

JiST — Java in Simulation Time

configurability

o configurability is essential for simulators
1. source level reuse; recompilation
2. configuration files read by driver program
3. driver program is a scripting language engine

e support for multiple scripting languages by reflection

no additional code
no memory overhead
no performance hit

Bsh - scripted Java
Jython - Python

Smalitalk, Tcl, Ruby,
Scheme and JavaScript

JiST — Java in Simulation Time

-3¢

sinulatar bytecode modified classes
|
v

\\\\\\\ @

e . . simulation
\\\\\\\ — | script engine EREREEREEED]

\\\\\\\ S.ta.te
\\\\\\\

\\\\\\\

configuration script A

1O,

v

| —— code simulation
IEEEEE » crecution kernel

23

simulations using real applications

e using entity method invocations...
e one can easily write event-driven entities.
 what about process-oriented simulation?

e blocking events
e any entity method that “throws” a Cont i nuat i on exception

e event processing frozen at invocation

e continues after call event E B E
completes, at some later N . .
simulation time (event | 1) ' :

£ | nonhiock ! - ~
(... > f m# | - l k2
 benefits —L | J ¢ ' o §
- . e ta

e no explicit process e o]

e blocking and non-blocking coexist S e S 1

e akin to simulation time threading %T o | bk

 can build simulated network sockets E R i

e can run standard applications over I =

these simulated sockets t

| %

JiST — Java in Simulation Time 24

capturing continuations

mark entity method as blocking: t hr ows Cont i nuati on
saving and restoring the stack is non-trivial in Java!

— event processing path

--- continuction path

—|— regular invocation

@ biocking entity invocation

Before CPS transform:

1
.
3 1nstructions
4
5
(]
7

cetll
.:. save .-
% o ..-".,‘_
L
%‘ L 1|-1.||r
s
= | |
= | |
¥ - % A I
- W s %
Ty
restore

JiST — Java in Simulation Time

P cvent processing

result

METHOD continuable:

invocation BLOCKING

mora instructions

After CPS transform:

1 METHOD continuable:
2 if jist.isRestoreModsa:
3 jist.popFrame £
4 switch f.pc:
5 casa PCl:
& raestorelocals f.locals
T restorestack f£.stack
B goto PC1
9

10

11 instructions

12

13 satpCc E.poc, PCI

14 savelocals f.locals

15 savaStack f.etack

16 PC1:

17 invocation BLOCKING

18 if jist.iss8aveMode:

19 jist.pushFrame £

20 return

21

2 more 1nstructions

simulation time concurrency

using continuations...
o simulation time Thr ead

e cooperative concurrency

e can also support pre-emptive, but not necessary
e simulation time concurrency primitives:

e CSP Channel: Ji st API . cr eat eChannel ()

e locks, semaphores, barriers, monitors, FIFOs, ...

> channel

FECEIVE

-
I
‘r‘ d"ltml‘ .
d ’EQ{:] senel Z entiy
— > @ continuation
receive ! sened
cellbeack . cellbeick
v O data

fime

JiST — Java in Simulation Time

26

rewriter flexibility

e simulation time transformation

extend Java object model with entities
extend Java execution model with events
language-based simulation kernel

e extensions to the model

timeless objects: pass-by-reference to avoid copy, saves memory

reflection: scripting, simulation configuration, tracing

tight event coupling: cross-layer optimization, debugging

proxy entities: interface-based entity definition

blocking events: call and callback, CPS transformation, standard applications
simulation time concurrency: Threads, Channels and other synch. primitives
distribution: location independence of entities, single system image abstraction
parallelism: concurrent and speculative execution

orthogonal additions, transformations and optimizations

o platform for simulation research

e.g. reverse computations in optimistic simulation [Carothers '99]
e.g. stack-less process oriented simulation [Booth '97]

JiST — Java in Simulation Time

summary

e JIiST — Java in Simulation Time
convert virtual machine into simulation platform
efficient both in terms of throughput and memory

flexible: timeless objects, reflection-based scripting,

tight event coupling, proxy entities, continuations and
blocking methods, simulation time concurrency,

distribution, concurrency ...
e serve as a simulation research platform

e merges systems- and language-based kemel library language JiST

H H ransparen ++ ++ ++

approaches to simulator construction Pt . A o

» efficient, transparent and standard standard o+ ++

e SWANS - Scalable Wireless Ad hoc Network Simulator o,
e built atop JiST, proof of concept ~'

component-based framework
runs standard Java networking applications

uses hierarchical binning to perform signal propagation
scales to networks of a million nodes on a uni-processor

JiST — Java in Simulation Time

28

JIST —
Java in Simulation Time

for the

Scalable Simulation of
Mobile Ad hoc Networks

THANK YOU.

