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1 Introduction

Discrete-event simulators are important scientific tools and the focus of a vast body of computer science research
that is directed at their efficient design and execution. The JiST system, which stands for Java in Simulation Time,
follows a long line of simulation frameworks, languages and systems. JiST is a new Java-based discrete-event
simulation engine with a number of novel and unique design features. The purpose of this document is to expose
those features with examples, to describe the overall functioning of the system and to leave the reader with an
understanding of how to use JiST to construct efficient, robust and scalable simulations.

2 Motivation

Due to their popularity and widespread utility, discrete event simulators have been the subject of much research
into their efficient design and execution (surveyed in [14, 6, 17, 8]). From a systems perspective, researchers have
built many types of simulation kernels and libraries. And, from a modelling perspective, researchers have designed
numerous languages specifically for simulation. We introduce each of these three alternative simulator construction
approaches below.

Simulation kernels, including systems such as the seminal TimeWarp OS [10], transparently create a convenient
simulation time abstraction. Such systems operate at the process boundary: they control process scheduling, inter-
process communication and the system clock in a manner that transparently virtualizes time for its applications.
The process boundary provides much flexibility. Such systems can transparently support concurrent execution of
simulation applications and even speculative and distributed execution. Furthermore, by mimicking the system call
interface of a conventional operating system, one can run simulations comprised of standard, unmodified programs.

Unfortunately, the process boundary is also a source of inefficiency. Simulation libraries, such as Compose [12]
and others, trade the transparency afforded by process-level isolation in favor of increased efficiency. For example,
by moving from an explicit to a logical process model one can eliminate the context-switching and marshalling costs
required for event dispatch and thus improve simulation throughput. However, various simulation functions that
existed within the kernel, such as process scheduling and message passing, must then be provided in user-space. In
essence, the simulation kernel and its applications are merged into a single monolithic process that contains both
the simulation model as well as its own execution engine. This imposes an internal structure within the simulation
program that is not explicitly enforced. Morever, the application code becomes increasingly complex and is littered
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kernel library language JiST
transparent v v v
efficient v, X v, X v
standard v v v

Table 1: Trade-offs of different approaches for constructing simulations.

with library calls and callbacks. In practice, this obscures possible high-level optimisations and limits the degree of
execution sophistication.

Simulation languages, such as Simula [5], Parsec [2] and many others, are designed to simplify simulation
development and to explicitly enforce the correctness of monolithic simulation programs. Simulation languages
often introduce simulation time execution semantics, which allow for parallel and speculative execution transpar-
ently, without any program modification. Such languages often also introduce handy constructs, such as messages
and entities, that can be used to logically partition the application state. Constraints on simulation state and on event
causality can be statically enforced by the compiler and they also permit important static and dynamic optimizations.
An interesting recent example of a language-based simulation optimization is that of reducing the overhead of spec-
ulative simulation execution through the use of reverse computations [4]. While it is perfectly possible to provide
forward and reverse computations for each simulation event, doing so manually without the aid of a special reverse-
compiler is not realistic. Unfortunately, simulation languages are, by definition, domain-specific and therefore suffer
from specialization. They usually lack modern features and portability and also lag in terms of general-purpose
optimizations and implementation efficiency. This only perpetuates the small user-base problem. Perhaps the most
significant barrier to adoption by the broader community is that the simulation programs themselves need to be
rewritten.

In summary, each of these three fundamental approaches to simulation construction trades off a different desir-
able property, as shown in Table 1. Thus, despite the plethora of ideas and contributions to theory, languages and
systems, the simulation community has repeatedly asked itself “will the field survive?” under a perception that it
had “failed to make a significant impact” on the broader community (see [7, 15, 2] and others). For example, even
though a number of parallel discrete event simulation environments have been shown to scale to networks of beyond
10* nodes, slow sequential network simulators remain the norm [18]. In particular, most published ad hoc network
results are based on simulations of few nodes (usually less than 500 nodes), for a short duration and over a limited
field. Larger simulations usually compromise on simulation detail or duration, reduce node density or restrict node
mobility.

These observations influenced the design and direction of JiST. Specifically, we decided from the outset to:

e notinvent a simulation language, since new languages, and especially domain-specific ones, are rarely adopted
by the broader community;

e not create a simulation library, since libraries often require developers to clutter their code with simulation-
specific library calls and impose unnatural program structure to achieve performance; and

e not develop a new system kernel or language runtime for simulation, since custom kernels or language run-
times are rarely as optimized, reliable, featured or portable as their generic counterparts.
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Instead, we propose a new way of building simulators: to bring simulation semantics to a modern and popular
virtual machine. JiST, which stands for Java in Simuation Time, is a new discrete event simulation system built
along these principles, integrating prior systems and languages approaches. Specifically, the key motivation behind
JiST is to create a simulation system that can execute discrete event simulations both efficiently and transparently,
yet to achieve this using only a standard systems language and runtime, where:

e cfficient refers to a runtime that compares favorably with existing, highly optimized simulation systems;
e transparent implies that simulations are automatically transformed to run with simulation time semantics;

¢ and standard denotes writing simulations in a conventional, systems programming language, as opposed to a
domain-specific language designed explicitly for simulation.

These three attributes — the last one in particular — highlight an important distinction between JiST and previous
simulation systems in that the simulation code that runs on JiST need not be written in a domain-specific language
invented specifically for writing simulations, nor need it be littered with special-purpose system calls and call-backs
to support runtime simulation functionality. Instead, JiST transparently introduces simulation time execution se-
mantics to simulation programs written in plain Java and they are executed over an unmodified Java virtual machine.
JiST converts a virtual machine into a simulation system that is both flexible and surprisingly efficient and scalable.

3 Architecture

The JiST system architecture, depicted in Figure 1, consists of four distinct components: a compiler, a bytecode
rewriter, a simulation kernel and a virtual machine. One writes JiST simulation programs in plain, unmodified Java
and compiles them to bytecode using a regular Java language compiler. These compiled classes are then modified,
via a bytecode-level rewriter, to run over a simulation kernel and to support the simulation time semantics described
shortly. The simulation program, the rewriter and the JiST kernel are all written in pure Java. Thus, this entire
process occurs within a standard, unmodified Java virtual machine (JVM).

The benefits of this approach to simulator construction over traditional systems and languages approaches are
numerous. Embedding the simulation semantics within the Java language allows us to reuse a large body of work,
including the Java language itself, its standard libraries and existing compilers. JiST benefits from the automatic
garbage collection, type-safety, reflection and many other properties of the Java language. This approach also lowers
the learning curve for users and facilitates the reuse of code for building simulations. The use of a standard virtual
machine provides an efficient, highly-optimized and portable execution platform and allows for important cross-
layer optimization between the simulation kernel and running simulation. Furthermore, since the kernel and the
simulation are both running within the same process space we reduce serialization and context switching overheads.
In summary, a key benefit of the JiST approach is that it allows for the efficient execution of simulation programs
within the context of a modern and popular language. JiST combines simulation semantics, found in custom simu-
lation languages and simulation libraries, with modern language capabilities. This design results in a system that is
convenient to use, robust and efficient.
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Figure 1: The JiST system architecture — simulations are compiled (1), then dynamically instrumented by the rewriter
(2) and finally executed (3). The compiler and virtual machine are standard Java language components. Simulation
time semantics are introduced by the rewriting classloader and supported at runtime by the Java-based simulation
kernel.

4 Hello world

We begin with a customary example: the ‘Hello World!” as a JiST program, listed in Figure 2. The first thing to note
is that this is a valid Java program.
You can compile it with a Java compiler:

javac hello.java
And, run it as a regular Java program:
java hello

Scanning the source listing, you should also notice the repeated use of the Ji st API , on lines 3, 14 and 17.
This Ji st API class represents the application interface exposed by the simulation kernel. Of course, if we run our
hel | o program without the JiST runtime, simply under a regular Java runtime, there will be no active simulation
kernel. In this case, the entire Ji st APl acts as a dummy class that merely facilitates type-safe execution: the
Ent i t y interface is empty, the s| eep call does nothing and the get Ti e function returns zero. In fact, the correct
way to think about the Ji st API is that it marks the program source in a manner that both respects Java syntax and
is preserved through the compilation process. It allows type-safe compilation of JiST simulation programs using a
conventional Java compiler.

However, we can also run our hel | o simulation under JiST:

java jist.runtinme.Main hello

In this case, we will have a simulation kernel loaded and running. Among other things, this kernel installs a
class loader into the JVM, which dynamically rewrites our hel | o bytecode as it is loaded. The various Ji st API
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hello.java

1 inport jist.runtinme.JistAPl;

2

3 class hello inplements JistAPlI.Entity

4 {

5 public static void main(String[] args)
6

7 Systemout.println("sinulation start");
8 hello h = new hello();

9 h. nyEvent () ;

10 }

11

12 public void myEvent ()

13 {

14 Ji st APl . sl eep(1);

15 nyEvent () ;

16 Systemout.println("hello world, t="
17 +Ji st APl . get Ti ne() ) ;

18 }

19 }

Figure 2: The simplest of simulations consists of a single entity that emits a message at each time step.

markings within the compiled simulation program serve to direct the code transformations that introduce the simu-
lation time semantics into the bytecode. The entire JiST functionality is exposed to the simulation developer in this
manner, viaj i st.runti me. Ji st API .

Although it is possible to silently modify the meaning of some existing functions, such as Thr ead. sl eep and
System current Ti meM | | i s instead of introducing new Ji st API functions, we decided against this kind
of syntactic sugar. First, not all simulation time primitives have Java counterparts and we would like to keep all
the simulation-oriented functions together. Second, our approach makes simulation-oriented primitives explicit, and
preserves the existing functionality.

Now, returning to our hel | o example, you will notice that the call to my Event on line 15 is recursive. Running
the program on its own, without the JiST runtime, will produce a stack overflow, as expected, on exactly that line.

However, executing the same application under JiST produces the output:
> simulation start
> hello world, t=1
> hello world, t=2
> etc.

In essence, our method call has been transformed into a simulation event on the hel | o entity. It is scheduled
and invoked by the simulation kernel in simulation time. Note, also, that hel | o is an entity, not a regular object,
since it implements the Ji st APl . Ent i ty interface. You may also observe, from the output, that the sl eep
serves to advance the simulation time of the system. And, clearly, there is no stack overflow. Thus, although we
reuse the Java language, as well as its compiler and virtual machine, we extend the object model of the language and
execution semantics of the virtual machine, so that simulation programs will run in simulation time.
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5 Simulation time

The standard Java virtual machine is a stack-based Java byte-code execution engine with well-defined execution
semantics [11]. In this standard execution model, which we refer to as actual time execution, the passing of time is
not dependent on the progress of the application. In other words, the system clock advances regardless of how many
byte-code instructions are processed. Also, the program can advance at a variable rate, since it depends not only
on processor speed, but also on other unpredictable things, such as interrupts and application inputs. Moreover, the
JVM certainly does not make strong guarantees regarding timely program progress: it may decide, for example, to
perform garbage collection at any point.

To solve such problems, much research has been devoted to executing applications in real time or with more
predictable performance models, wherein the runtime can guarantee that instructions or sets of instructions will
meet given deadlines. Thus, the rate of an application’s progress is made dependent on the passing of time.

In JiST, the opposite is true: that is, the progress of time depends on the progress of the application. The appli-
cation clock, which represents simulation time, does not advance to the next discrete time point until all processing
for the current, discrete simulation time has been completed.

In simulation time execution, individual primitive application byte-code instructions are processed sequentially,
following the standard Java control flow semantics, but the application time remains unchanged. Application code
can advance time only via the sl eep(n) system call. In essence, every instruction takes zero time to process
except sl eep, which advances the simulation clock forward by exactly n simulated time quanta. The JiST runtime
processes an application in its simulation-temporal order until all the events are exhausted or until a pre-determined
ending time is reached, whichever comes first. We summarize these different execution models in Table 2.

actual time - program progress and time are independent
real time - program progress depends on time
simulation time - time depends on program progress

Table 2: Relationship between program progress and time under different execution models

6 Object model and execution semantics

JiST simulation programs are written in plain Java, an object-oriented language. As in any object-oriented language
the entire simulation program comprises numerous classes that collectively implement the logic of the simulation
model. During its execution, the state of the program is contained entirely within individual objects. These objects
communicate by passing messages, which are represented as object method invocations in the language.

In order to facilitate the design of simulations, JiST extends this traditional programming model with the no-
tion of simulation entities. In the program code, entities are defined as instances of classes that implement the
Ji st APl . Ent i ty interface. Although entities are regular objects to the JVM, they serve to logically encapsulate
application objects, as shown in Figure 3 and demarcate independent simulation components. Thus, every object
should be logically contained within an entity. Conversely, the state of an entity is the combined state of all the
objects reachable from it.
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Figure 3: Simulation programs are partitioned into entities along object boundaries. Thus, entities do not share any
application state and can independently progress through simulation time between interactions.

To enforce this strict partitioning of a simulation into entities and to prevent object communication across entity
boundaries, each (mutable) object in the system must belong to a single entity and must be entirely encapsulated
within it. In Java, this merely means that all references to an object must originate either directly or indirectly from
a single entity. This condition suffices to ensure simulation partitioning, since Java is a safe language.

The JiST kernel manages a simulation at the granularity of its entities. Instructions and method invocations
within an entity follow the regular Java control flow and semantics, entirely opaque to the JiST infrastructure. The
vast majority of this code is involved with encoding the logic of the simulation model and is entirely unrelated to the
notion of simulation time. All the standard Java class libraries are available and behave as expected. In addition, the
simulation developer has access to a few basic JiST primitives, including functions such as get Ti ne and sl eep,
which allow for interactions with the simulation kernel.

In contrast, invocations on entities (as opposed to regular objects) represent simulation events. The execution
semantics are that method invocations on entities are non-blocking. They are merely queued at their point of invoca-
tion, not invoked. The invocation is actually performed on the callee (or target) entity only when it reaches the same
simulation time as the calling (or source) entity. In other words, cross-entity method invocations act as synchroniza-
tion points in simulation time. Or, from a language-oriented perspective, an entity method is like a coroutine, albeit
scheduled in simulation time. This is a convenient abstraction in that it eliminates the need for an explicit simulation
event queue. It is the JiST kernel that actually runs the event loop, which processes the simulation events, invoking
the appropriate method for each event dequeued in its simulation time order and executing the event to completion
without continuation.

A complete separation of entities, as discussed above, is not possible without an additional consideration. That
is, in order to invoke a method on another entity — to send it an event — the caller entity must hold some kind of
reference to the target entity, as depicted in Figure 4. We, therefore, distinguish between object references and entity
references, and expand on the constraints stated above. All references to a given (mutable) object must originate
from within the same entity. However, references to entities are free to originate from any entity. The rationale is that
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Figure 4: At runtime, entity references are transparently replaced with separators. This both preserves the separation
of entity state and also serves as a convenient point to insert additional functionality. For example, separators can
provide the abstraction of a single system by tracking the location of remote entities and relaying events to them.

object references imply inclusion within the state of an entity, whereas entity references represent channels along
which simulation events are transmitted. As a direct consequence, entities do not nest, just as regular Java objects
do not.

We reintroduce the separation of entities at runtime, by transparently replacing all entity references within the
simulation bytecode with special objects, called separators, as shown on the right of Figure 4. The separator object
identifies a particular entity, but without referencing it directly. Rather, separators store a unique entity identifier that
is generated by the kernel for each entity during its initialization. Separators can be held in local variables, stored in
fields or objects or passed as method parameters, just like the regular object references that they replace. Since the
replacement occurs across the entire simulation bytecode, it remains type-safe.

Due to this imposed separation, we guarantee that interactions among entities can only occur via the JiST kernel.
Furthermore, since entities do not share any application state, each entity may actually progress through simulation
time independently between interactions. The separators, in effect, represent an application state-time boundary
around each entity, similar to a TimeWarp [10] process, but at finer granularity. Thus, by tracking the simulation
time of each individual entity, these separators allow for concurrent execution. By adding the ability to checkpoint
entities, via Java serialization, for example, the system can support speculative execution as well. Finally, separators
also provide a convenient point for the distribution of entities across multiple machines. In a distributed simulation,
the separators function also as remote stubs and transparently maintain a convenient abstraction of a single system
image. Separators transparently store and track the location of entities as they migrate among machines in response
to fluctuating processor, memory and network loads.

The role of the simulation developer, then, is to codify the simulation model in regular Java and to partition the
state of the simulation not only into objects, but also into a set of independent entities along reasonable application
boundaries. The JiST infrastructure will transparently execute the program efficiently, while retaining the simulation
time semantics.
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7 Simulation time invocation

To illustrate the extended JiST object model and simulation time invocation, we return to our hel | o program and
describe its execution step-by-step. Omitting unnecessary complexity in the interests of clarity, below are the basic
operations that occur when one executes:

java jist.runtinme.Main hello

e The JVM is loaded and initialized.

e The JiST simulation kernel is loaded into the JVM and initialized. Among other activities, a dynamic class
loader is installed, so that JiST verification and rewriting of application occurs on demand.

e The kernel creates an anonymous, bootstrap simulation entity. The kernel then creates and enqueues a boot-
strap simulation event at time ¢ = 0, which will invoke the simulation program’s mai n method with any
command-line arguments, when the simulation event loop begins.

e The kernel enters the simulation event loop and our hel | o simulation begins.

e Process the bootstrap event at time ¢ = 0:

— Line 7: Output* “ si mul ation start’’.

— Line 8: Create and initialize a new instance of hel | 0. Note that hel | o is an entity, not a regular object,
because it implements the Ji st APl . Enti ty interface on line 3. Thus, at runtime, local variable h
will actually contain a separator object.

— Line 9: Perform a simulation time invocation of myEvent . In other words, schedule an event at the
current local simulation time ¢t = 0 to invoke my Event on the entity referenced by h.

— End of event.

e Process the myEvent event at time ¢ = 0.

Line 14: Advance the local simulation time by one time quantum to ¢t = 1.

Line 15: Perform a simulation time invocation of nyEvent . That is, schedule an event at current local
simulation time ¢t = 1 to invoke ny Event on the current entity.

Line 16: Emitthe * * hel | o wor | d’ ' message, with the current local simulation time.

End of event.

e Process the next scheduled nyEvent eventattimet =1,2,3,---, as above.

There are a number of additional observations to make regarding the execution of our primitive simulation
program. Note, for example, that there is no mention of concurrency. In fact, there may be multiple threads that share
the simulation event queue and execute the events in parallel. The JiST kernel, however, does guarantee that events
are atomic. Thus, events on the same entity are executed to completion without interruption. Entity invocations do
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not interrupt event processing; the invocation is merely enqueued. Also, other events may not interrupt processing,
even during a sl eep call. The sl eep merely advances the local simulation clock. For instance, take two events
t, and to, at times ¢ = 1 and ¢t = 2, respectively. Assume that the first event, during the course of its execution,
calls sl eep for 3 time quanta. Nevertheless, ¢5 will be invoked only after ¢; processing is complete. In effect, the
sl eep call is used for scheduling outgoing invocations with delay, but not for delaying internal operations. Thus,
all operations on the state of an entity occur atomically, at the simulation time of the current event.

There are also some intricacies with respect to the extended object model. For instance, only invocations on
public methods of entities are rewritten into event dispatches. An entity represents an event-based interface around
some internal state. This external interface, as with regular Java objects, is considered to be the set of public methods.
Non-public methods are considered to be regular object methods, not entity methods, and have the regular Java
invocation semantics. Furthermore, since entity method invocations are event-based, they are performed without
continuation. Consequently, there can be no continuation defined. In other words, public entity methods must return
voi d and can not statically declare any throwable exceptions. If, at runtime, an exception nevertheless occurs and
escapes outside the boundary of an entity to the kernel event loop, then the system will immediately terminate the
faulty simulation. For a similar reason, entities may not expose public fields. Specifically, a remote field access is
equivalent to an accessor method, with a non-voi d return type. Likewise, static fields represent state shared across
entities and are disallowed. Finally, entity constructors are treated specially. They instantiate the desired entity,
but return a separator object referencing the newly created entity, in place of the object itself. In fact, it is not the
constructor that is actually modified, rather the constructor calling-point right after a corresponding new instruction.

Finally, while the semantics of simulation time invocation are sufficient to use the system, it is important to
understand the underlying implementation of simulation time invocation, at least at a high level. The simulation
time invocations are introduced by the rewriter, which inspects all method invocation instructions to find invocations
on targets that are entities. At this program location, the stack will contain the target reference (in fact, the separator
object) and any arguments. The rewriter inserts bytecode instructions to pack the arguments into an object array
and to rearrange the stack to hold three items: the target, a method reflection object and the invocation argument
array. The invocation instruction is then converted into a call to the simulation kernel, which creates and schedules
a simulation event with this information. For performance, method reflection objects are pre-generated statically,
object arrays are pooled to avoid object instantiation as are the event objects, the expensive Java reflection access
checks are performed once and then safely disabled and synchronization locks are escalated wherever possible. Un-
fortunately, the Java type system and reflection interface forces us to wrap primitive types in their object counterparts
to be placed in the argument array, which incurs a small, but notable overhead. It would be nice to have the JVM
extended to support the efficient “boxing” of primitive types, as in the CLR. Simulation developers may wish to note
this fact and pass along objects instead of primitives, but only when this can be achieved without an additional object
instantiation.

8 Timeless objects

Having exhausted our hel | o simulation and discussed the central notion of simulation time invocation, we now
introduce more advanced JiST features and add complexities to the basic model. Our first extension is the notion
of timeless objects, introduced purely for reasons of performance. A timeless object is defined as one that will not
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Figure 5. Objects passed across entities should be timeless — in other words, should hold temporally stable values
—to prevent temporal inconsistencies in the simulation state. Sharing timeless objects among entities is an effective
way to conserve simulation memory.

change over time. Knowing that a value is temporally stable, allows the system to safely pass it across entities by
reference, rather than by copy.

The system may be able to infer that an object is open-world immutable, through static analysis and automatically
add the timeless labels. In some cases, the analysis can be overly conservative due to restrictions of the Java type
system. The programmer can then explicitly define an object to be timeless, by tagging the object with the empty
Ji st API . Ti el ess interface. This tag implies that the object will not be modified in the simulation’s future,
even though it technically could be.

The timeless tag may also be useful for sharing state among entities in an effort to reduce simulation memory
consumption, as depicted in Figure 5. This facility should be exercised with care. Since entities may progress at
different rates through simulation time, any shared state must actually be timeless. Objects with temporally unstable
values shared across entities will create temporal inconsistencies in the state of the simulation. Conversely, the
simulation developer should be aware that non-timeless objects are passed across entities by copy. Thus, it is not
possible to transmit information back to the caller using an object parameter in an event. Two separate events should
be used instead.

9 Proxy entities

Entities encapsulate state and present an event-oriented interface encoded as methods. However, methods also
represent regular Java invocations on objects. The developer of an entity class must, therefore, remember that public
methods are invoked in simulation time while non-public methods are regular invocations, that only non-public and
non-static fields are allowed, etc. This can be confusing and it imposes restrictions on the developer and can lead to
awkward coding practices within entity classes. In other words, there exists a clash of functionality between entity
and object invocation semantics at the syntactic level.

To address this issue, we introduce proxy entities. As their name implies, proxy entities exist only to relay
incoming events onto a target object. As with any entity method invocation, there are still two phases: event dispatch
and event delivery. And, even though the internal mechanisms used for both event dispatch and delivery of proxied
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invocations may be totally different from regular entity invocations, there are no syntactic differences visible to the
developer. Furthermore, the performance is equivalent.

Proxies are created via the pr oxy API call, which accepts two parameters. The first parameter is the proxy
target and can be one of three types: an entity, a regular object or a proxiable object. The proxying of each of the
three possible target types is illustrated in Figure 6 and described below. The second parameter to the system call is
the proxy interface, indicating the methods that are to be exposed and relayed to the target. Clearly, the proxy target
must implement the proxy interface and this is also verified by the system.

e regular object proxy: Regular objects do not contain the machinery to receive events from the system. They
need to be contained within entities. Therefore, we proxy an object by creating a new entity, which implements
the given interface and relays methods to the given target object. In other words, we wrap the object and all
objects reachable from it with a new entity.

Note that this approach inserts the overhead of an additional method invocation into the event delivery process.
Note also that if one invokes the proxy call twice on the same object, the result is two new entities that share
that object in their state, as well as all those reachable from it. We can, however, eliminate this indirection
through the use of proxiable objects.

e proxiable object proxy: A proxiable object is any object that implements the Ji st API . Pr oxi abl e in-
terface. This interface, like the Ji st APl . Ent i t y interface, is empty and serves only as a marker to the
rewriter. The effect of this tag is to introduce the necessary machinery required to receive events from the
kernel. In this manner, the extra method call overhead of an intermediate relaying entity is eliminated, so this
approach is always preferred over proxying regular objects, when source code is available. It merely requires
the addition of a proxiable tag to the target.

e entity proxy: Finally, the last kind of object that we can proxy is an existing entity. An entity already includes
all the machinery required to receive and to process events. Thus, the event delivery path is unchanged.
However, the pr oxy call does serve an important function on the dispatch side. The result of the pr oxy
call, in this and in all the cases above as well, is a new separator object that implements and relays only the
methods of specified interface. Thus, the system call serves to restrict the events allowed from a particular
source. One should consider a proxy separator to be a capability (in the systems sense), since it is unforgeable:
the separator cannot be cast to other interfaces at runtime.

Proxy entities simplify development. They allow an object the flexibility of combining both event-driven and
regular method invocation, without loss of performance. They are interface-based, so they do not interfere with the
object hierarchy. And, they allow for a capability-like isolation of functionality, which is useful in larger simulation
programs. Finally, although the proxy separators are completely different in implementation, they behave in the
same way as regular separators, both in terms of execution semantics and performance.

The code listing in Figure 7 shows how to use proxy entities with a basic example, similar to the earlier hel | o
example. Note that nyEnt i t y is proxiable, because it implements the ny| nt er f ace on line 10, which inherits
Ji st API . Proxi abl eon line 5. The proxy separator is defined on line 13 using the Ji st API . pr oxy call with
the target proxiable instance and appropriate interface class. The invocations on this proxy on lines 19 and 27 occur
in simulation time.
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Figure 6: Proxy entities use an interface-based approach to identify entity methods, thus simplifying the development
of entities. The proxy system call behavior corresponds to the type of object passed to it.

10 Reflection

An important consideration in the design of many popular simulators is configurability and the desire is to reuse
the same simulation code for many different experiments. A few design approaches are possible. The first is
source-level reuse. This approach involves the recompilation of the simulation program before each run with hard-
coded simulation parameters and possibly also with a small driver program for simulation initialization. While
the source-based approach is flexible and also runs efficiently, it is cumbersome to require recompilation on each
run. A second approach is to use a configuration file that is parsed by a more sophisticated driver program as it
initializes the simulation. This eliminates the need for recompilation in many circumstances, but it it is a brittle and
inflexible option, since it is limited to pre-defined configuration options. A third approach is to integrate a scripting
language into the simulation for purposes of configuration, an approach championed by ns2. The scripting language
interpreter — Tcl, in the case of ns2, — is backed by the compiled simulation runtime, so that script variables are linked
to simulation values. The script is used to instantiate and initialize the various pre-defined simulation components.
This is an attractive, flexible approach, since it allows the simulation to be configured with a script.

Unfortunately, the linkage between the compiled simulation components and the interpreted simulation config-
uration scripts is difficult to establish. It is achieved manually via a programming pattern called split objects, which
requires interface functions that channel information in objects within the compiled space to and from objects in the
interpreted space. This not only clutters the core simulation code, but it is also inefficient in that it duplicates infor-
mation within the process memory. Furthermore, the script performance depends heavily on these interfaces. The
choice of binding ns2 with Tcl, for example, requires excessive string manipulation and leads to long configuration
times.

In contrast, the scripting functionality comes “for free” in JiST. It does not require any additional code in the
simulation components. It does not incur any additional memory overhead. And, the script can configure a sim-
ulation just as quickly as a custom driver program. This is all possible because Java is a dynamic language that
supports reflection. A script engine can query and update simulation values by reflection and can also dynamically
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proxy.java

1 inport jist.runtinme.JistAPl;

2

3 public class proxy

4 |

5 public static interface nmylnterface extends Ji stAPl.Proxiable
6 {

7 voi d nyEvent();

8 1}

9

10 public static class myEntity inplenents nylnterface

11 {

12 private nylnterface proxy =

13 (mylnterface)JistAPl.proxy(this, nylnterface.class);
14 public nylnterface getProxy() { return proxy; }

15

16 public void nyEvent()

17 {

18 Ji st APl . sl eep(1);

19 proxy. myEvent () ;

20 Systemout.println("myEvent at t="+JistAPl.getTime());
21 }

22 }

23

24 public static void main(String args[])

25 {

26 mylnterface e = (new nyEntity()). getProxy();

27 e.nyEvent () ;

28 }

29 1}

Figure 7: An example illustrating a simple use of proxy entities.

pre-compile the driver script directly to bytecode for efficient execution. As illustrated in Figure 8, the access that
the script engine has to the simulation state is just as efficient and expressive as the compiled driver program.

A number of robust Java scripting engines already exist. JiST supports the BeanShell engine, with its Java syntax,
and also the Jython engine, which interprets Python scripts. If desired, other engines, such as Bistro (Smalltalk), Jacl
(Tcl), JRuby (Ruby), Kawa (Scheme), Rhino (JavaScript) or a custom simulation definition language interpreter can
easily be integrated as well and they can even co-exist.

As is the case with compiled driver programs, the driver script is invoked within its host script engine by the JiST
kernel. The script is the first, bootstrap event of any simulation. In addition, this functionality is exposed via the
Ji st API , so that even simulation programs can embed configuration scripts that are specific to those simulations.
For example, a wireless network simulator written atop JiST, called SWANS, uses scripts to configure network
topology and node protocol stacks.
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Figure 8: JiST can easily provide multiple scripting interfaces to configure its simulations without source modifica-
tion, memory overhead, or loss of performance. (1) As before, the simulation classes are loaded and rewritten on
demand. (2) The script engine configures the simulation, using reflection and may even dynamically compile the
script to bytecode for performance. (3) The simulation then runs, as before, interacting with the kernel as necessary.

11 Tight event coupling

Encoding an event-dispatch as a method invocation has a number of additional benefits, which can significantly
reduce the amount of simulation code required, as well as improve its clarity, without affecting runtime performance.
These benefits are summarized in Table 3. The first benefit of this encoding is type-safety, which eliminates a
common source of error: the source and target of an event are statically checked by the Java compiler. The event type
information is also managed automatically at runtime, which completely eliminates the many event type constants
and associated event type-cast code that is otherwise required. A third benefit is that marshalling of event parameters
is performed automatically. In contrast, simulators written against event-driven libraries often require a large number
of event structures and much code to simply pack and unpack parameters from these structures. Finally, debugging
event-driven simulators can be onerous, because simulation events arrive at target entities from the simulation queue
without context. Thus, it can be difficult to determine the cause of a faulty or unexpected incoming event. In JiST, an
event can automatically carry its context information: the point of dispatch (with line numbers, if source information
is available) as well as the state of the source entity. These contexts can then be chained to form an event causality
trace, the equivalent of a stack trace, which may be helpful in debugging. For performance reasons, this information
is collected only in JiST’s debug mode.

The tight coupling of event dispatch and delivery in the form of a method invocation also has important per-
formance implications. Tight event-loops, which can be determined only at runtime, can be dynamically optimized
across the kernel-simulation boundary. The tight coupling also abstracts the simulation event queue behind sim-
ulation time semantics. This, in turn, allows the JiST runtime to execute the simulation efficiently — in parallel
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hello.bsh

1 Systemout.printin("starting simulation fromBeanShell script!");
2 inport jist.mnisimhello;
3 hello h = new hello();
4 h.nyEvent();
hello.jpy
1 print 'starting sinulation fromJython script!’
2 inport jist.mnisimhello as hello
3 h = hello()
4 h.nyEvent()

Figure 9: Basic example of BeanShell and Jython script-based simulation drivers. One can use Java-based scripting
languages to configure and initialize simulations from existing components.

and optimistically — without requiring any modifications to the simulation code. Also the distribution of simulation
entities across different machines can occur transparently with respect to the running simulation.

type safety - source and target of event statically checked by compiler
event typing - not required; events automatically type-cast as they are dequeued
event structures - not required; event parameters automatically marshalled
debugging - event dispatch location and state available
execution - transparently allows for parallel, optimistic and distributed execution

Table 3: Benefits of tight event coupling achieved through simulation time method invocations

12 Continuations

Up to this point, we have described how entity method invocations can be used to model simulation events. This
facility provides us with all the functionality of an explicit event queue, which is all that many existing simulators
use, plus the ability to transparently execute the simulation more efficiently. However, it remains cumbersome to
model simulation processes, since they must be written as event-driven state machines. While many entities, such
as network protocols or routing algorithms, naturally take this event-oriented form, other kinds of entities do not.
For example, an entity that models a file-transfer is more readily encoded as a process than as a sequence of events.
Specifically, one would rather use a tight loop around a blocking send routine than dispatch send events to some
transport entity, which will eventually dispatch send-complete events in return. To that end, we introduce simulation
time continuations.

In order to invoke an entity method with continuation, the simulation developer merely needs to declare that a
given entity method is blocking. Syntactically, an entity method is blocking if and only if it declares that it throws a
Ji st APl . Cont i nuat i on exception. This exception is not actually thrown. It acts merely as a method tag and
as an indication to the JiST rewriter. Moreover, it need not be explicitly declared further up the call-chain, since it is
a sub-class of Er r or , the root of an implicit exception hierarchy.

The semantics of a blocking entity method invocation, as shown in Figure 10, are a natural extension atop the
existing event-based invocation. We first save the call-stack of the calling entity and attach it to the outgoing event.
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Figure 10: The addition of blocking methods allows simulation developers to regain the simplicity of process-
oriented development. When a blocking entity method is invoked, the continuation state of the current event is
saved and attached to a call event. When this call event is complete, we schedule a callback event to the caller. The
continuation is restored and the caller continues its processing, albeit at a later simulation time.

When the call event is complete, we notice that it has caller information, so we dispatch a callback event to the caller,
with its continuation information. Thus, when the callback event is eventually dequeued, the state is restored and
execution will continue right after the point of the blocking entity method invocation. In the meantime, however,
the local simulation time has progressed to the simulation time at which the calling event was completed and other
events may have been processed against the entity.

This approach has a number of advantages. First, it allows blocking and non-blocking entity methods to co-exist.
Methods can arbitrarily be tagged as blocking and we extend the basic event structure to store the call and callback
information. Secondly, there is no notion of an explicit process. Unlike process-oriented simulation runtime, which
must allocate a fixed stack-space for each real or logical process, the JiST stack space is unified across all its active
entities, reducing memory consumption. The continuation stacks actually exist in the heap along with the events
that contain them and any objects that they reference. Moreover, our model is actually closer to threading, in that
multiple continuations can exist simultaneously for a single entity. Finally, there is no system context switching
required. The parallelism occurs only in simulation time, so the underlying events may be executed sequentially
within a single thread of control.

The code listing in Figure 11 shows an entity with a single blocking method. Notice that bl ocki ng is a
blocking method, since it declares that it may throw a Ji st API . Cont i nuat i on exception on line 5. Otherwise,
bl ocki ng would be a regular entity method, invoked in simulation time. The effect of the blocking tag is best
understood by comparing the output for the program both with and without the blocking semantics, i.e. both with an
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cont. java

1 inport jist.runtinme.JistAPl;

2

3 public class cont inplenents JistAPl.Entity

4 {

5 public void bl ocking() throws JistAPI.Continuation

6

7 Systemout.printin("called at t="+JistAPlI.getTine());
8 Ji st APl . sl eep(1);

9 1}

10

11 public static void main(String args[])

12 {

13 cont ¢ = new cont();

14 for(int i=0; i<3; i++)

15 {

16 Systemout.println("i="+i+" t="+JistAPl.getTinme());
17 c. bl ocki ng();

18 }

19 }

20 }

Figure 11: A basic entity which illustrates the use of a blocking method.

without the blocking tag on line 5. Note how the timestamps are affected, in addition to the ordering of the events.

blocking non-blocking
> i=0 t=0 > i=0 t=0
> called at t=0 > i=1 t=0
> i=1 t=1 > i=2 t=0
> called at t=1 > called at t=0
> =2 t=2 > called at t=0
> called at t=2 > called at t=0

Unfortunately, saving and restoring the call-stack for the purposes of continuation is not a trivial task in Java [20].
The fundamental difficulty arises from the fact that stack manipulations are not supported at either the language,
library or bytecode level. We have implemented and evaluated a number of ways to address this problem. The
specific choice of implementation does not affect the execution semantics of continuations. However, understanding
the underlying implementation may help simulation developers produce more efficient simulations.

Our implementation of continuations draws on ideas in the JavaGoX [21] and PicoThreads [3] projects, which
also need to save the stack, albeit in a radically different context. We introduce an important new idea to these
approaches, which eliminates the need to modify method signatures. This fact is significant, since it allows our
implementation to function even across the standard Java libraries and enables us, for example, to run standard,
unmodified Java network applications directly over our wireless simulator. This design also eliminates the use of
exceptions to carry state information and is considerably more efficient for our simulation needs.
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Before CPS transform: After CPS transform:

METHOD conti nuabl e: 1 METHOD conti nuabl e:
2 if jist.isRestorehbde:

instructions 3 jist.popFrane f

4 switch f.pc:
i nvocati on BLOCKING 5 case PC1:

6 restoreLocals f.locals

7 restoreStack f.stack

8

9

goto PC1

1
2
3
4
5
6
7 nore instructions

11 instructions

13 setPC f.pc, PC1
14 savelLocal s f.locals
15 saveStack f.stack

16 PC1L

17 i nvocati on BLOCKING
18 if jist.isSaveMde:
19 jist.pushFranme f

20 return

21

22 nore instructions

Figure 12: These pseudocode-bytecode listings show the basic CPS transformation that occurs on all continuable
methods. The transformation instruments the method to allow it to either: a) save and exit, or b) restore and start;
from any continuable invocation location.

Since we are not allowed access to the call-stack in Java, we instead convert parts of the original simulation
program into a continuation-passing style (CPS). The first step is to determine which parts of the simulation code
need to be transformed. For this purpose, the JiST rewriter incrementally produces a call-graph of the simulation at
runtime as it is loaded and uses the blocking method tags to compute all continuable methods. Continuable methods
are those methods that could exist on a call stack at the point of a blocking entity method invocation. Or, more
precisely, a continuable method is defined recursively as any method that contains:

e an entity method invocation instruction, whose target is a blocking method; or
e aregular object method invocation instruction, whose target is a continuable method.

Note that the continuable property does not spread recursively to the entire application, since the second, recursive
half of the continuable definition does not cross entity boundaries.

Each method within the continuable set undergoes a basic CPS transformation, as shown in Figure 12. We
scan the method for continuation points and assign each one a program location number. We then perform a data-
flow analysis of the method to determine the types of the local variables and stack slots at that point and use this
information to generate a custom class that will store the continuation frame of this program location. These classes,
containing properly typed fields for each of the local variables and stack slots in the frame, will be linked together to
form the preserved stack. Finally, we insert both saving and restoration code for each continuation point. The saving
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Figure 13: The JiST event loop also functions as a continuation trampoline. It saves the continuation state on a
blocking entity method invocation and restores it upon receiving the callback. Due to Java constraints, the stack
must be manually unwound and preserved.

code marshals the stack and locals into the custom frame object and pushes it onto the event continuation stack via
the kernel. The restoration code does the opposite and then jumps right back to the point of the blocking invocation.

All of this must be done in a type-safe manner. This requires special consideration not only for the primitive
types, but also for arrays and null-type values. There are other restrictions that stem from the bytecode semantics.
Specifically, the bytecode verifier will allow uninitialized values on the stack, but not in local variables or fields. The
bytecode verifier will also not allow an initializer (constructor) to be invoked more than once. We eliminate both of
these possibilities by statically verifying that no constructor is continuable.

Finally, the kernel functions as the continuation trampoline, as shown in Figure 13. When the kernel receives a
request to perform a call with continuation, it registers the call information, switches to save mode and returns to the
caller. The stack then unwinds and eventually returns to the event loop, at which point the call event is dispatched
with the continuation attached. When the call event is received, it is processed, and a callback event is dispatched in
return with both the continuation and the result attached. Upon receiving this callback event, the kernel switches to
restore mode and invokes the appropriate method. The stack then winds up to its prior state and the kernel receives
a request for a continuation call yet again. This time, the kernel simply returns the result of the call event and allows
the event processing to continue from where it left off.

The performance of a blocking call with a short stack is only around 2-3 times slower than two regular events.
Thus, continuations present a viable, efficient way to reclaim process-oriented simulation functionality within an
event-oriented simulation framework.

13 Concurrency

Using continuations, we also can recreate various concurrency primitives in simulation time. As an example, we
construct the Channel primitive from Hoare’s Communicating Sequential Processes (CSP) language [9]. Other
primitives, such as threads, locks, semaphores, barriers, monitors, FIFOs, etc., can readily be built either atop
Channels, or directly within the kernel.

As shown in Figure 14, the CSP channel blocks on the first receive (or send) call and stores the continuation.
When the matching send (or receive) arrives, then the data item is transferred and control returns to both callers.

JiST User Guide Page 20 of 34 March 19, 2004



E channel

>0

ESOR send 2] entity
E send (O continuation
v callback ® daa
ime

ti

Figure 14: A blocking CSP Channel is built using continuations. Other simulation synchronization primitives can

similarly be constructed.

A JiST channel is created via the cr eat eChannel system call. It supports both the CSP semantics, as well as
non-blocking sends and receives.

14 API

Many of the important kernel functions have already been mentioned. For completeness, we include the full JiST

application interface in Figure 15 and describe it below.

JiST API function

explanation

Entity interface

Continuation exception

Continuable exception

Timeless interface

tags a simulation object as an entity, which means that invocations
on this object follow simulation time semantics. e.g. j i st. swans.
nmac. MacEntity.

tags an entity method as blocking, which means that these en-
tity method invocations will be performed in simulation time,
but with continuation. e.g. ji st.swans. app. UdpSocket .
recei ve( Dat agr anPacket ).

explicitly tags a regular method as possibly blocking, useful only for
instances when static analysis can not propagate the blocking property
to all callers due to dynamic dispatch. e.g. the abstract method:j i st .
swans. app. i o. I nput Stream read().

explicitly tags a simulation object as timeless, which means that it
will not be changed across simulation time and thus need not be
copied when transferred among entities. e.g. j i st . swans. node.
Message.
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JiST API function explanation

getTime() returns the local simulation time. The local time is the time of the cur-
rent event being processed plus any additional sl eep time requested
during the processing of the current event.

END Simulation end time constants, greater than any legal simulation time.
sleep(time) advance the local simulation time.

end() end simulation after the current time-step.

endAt(time) end simulation after given absolute time.

callStaticAt(method, params, time) invoke a static method at given simulation time.

runAt(runnable, time) invoke a runnable object at given simulation time.

THIS entity self-referencing separator, analogous to Java t hi s object self-
reference. Should be type-cast before use.

ref(entity) returns a separator of a given entity. All statically detectable en-
tity references are automatically converted into separator stubs by the
rewriter, so this operator should not be needed. It is included only to
deal with rare instances of creating entity types dynamically and for
completeness.

isEntity(0) returns whether given reference is an entity reference.
toString(o) returns the string representation of an object or entity.
Proxiable interface an interface used to tag objects that may be proxied. It serves to im-

prove proxying performance by eliminating the need for a relaying
wrapper entity.

proxy(target, interface) Returns a proxy separator for the given target object and interface
class. The proxying approach depends on whether the target is an
existing entity, a regular object or a proxiable object. The result is an
object whose methods will be relayed to the target in simulation time.
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JiST API function

explanation

proxyMany(target, interface[])

run(type, name, args, prop)

createChannel()

setSimUnits(ticks, name)

getTimeString()

CustomRewriter interface

installRewriter(rewriter)

Logger interface

Same as proxy call and allows for multiple interfaces.

Start a new simulation with given name and arguments at the current
time. The supported simulation loader types are Java applications
(RUN_CLASS), BeanShell scripts (RUN_BSH), and Jython scripts
(RUN_JPY). The properties object carries simulation type-specific in-
formation directly to the simulation loader.

Create a new CSP Channel Entity.

Set the simulation time unit of measure and length in simulation ticks.
The default is 1 tick.

Return time string in simulation time units.

Defines an installable rewriting phase.

Installs a custom class rewriting phase at the beginning of the JiST
rewriting machinery. Used for simulation specific rewriting needs.
For example, SWANS uses this interface to rewrite the networking

library calls of applications to operate over the simulated network.

Defines an custom event logger.

setLog(logger) Set the simulation logger.
log(object) Log an object, usually a string.
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JistAPIl _java

void call Stati cAt(Method neth, bject[] parans, long tine);

long tine);

hj ect proxy(Cbject proxyTarget, Cass proxylnterface);
hj ect proxyMany(Cbj ect proxyTarget, Cass[] proxylnterface);

void run(int type, String nanme, String[] args,

1 package jist.runtinme;

2

3 public class JistAPI

4 {

5 public static interface Entity { }

6 public static class Continuation extends Error { }
7 public static class Continuable extends Error { }
8 public static interface Tineless { }

9

10 public static long getTinme();

11 public static |ong END;

12 public static void sleep(long n);

13 public static void end();

14 public static void endAt(long t);

15

16 public static

17 public static void runAt(Runnable r,

18

19 public static JistAPI.Entity TH'S;

20 public static EntityRef ref(Entity e);

21 public static boolean isEntity(Ooject 0);
22  public static String toString(Object 0);
23

24  public static interface Proxiable { }

25 public static

26 public static

27

28 public static final int RUN_CLASS = 0;

29 public static final int RUN.BSH = 1;

30 public static final int RUN_JPY = 2;

31 public static

32

33 public static Channel createChannel();

34

35 public static void setSinUnits(long ticks, String nane);
36 public static String getTi meString();

37

38 public static interface CustonRewiter {
39 Javad ass process(JavaC ass jcl);

40}

41 public static void install Rewite(CustonRewiter rewite);

public static interface Logger {

44 voi d | og(Obj ect 0);

}

46 public static void setlLog(JistAPl.Logger |ogger);
47 public static void log(String s);

hj ect properties);

Figure 15: The JiST application programming interface is exposed at the language level via the Ji st APl object.
The rewriter replaces default noop implementations of the various functions and interfaces with their simulation time

equivalents.
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15 Performance

Based on conventional wisdom [1], one would argue against implementing the JiST system in Java, for performance
reasons. In fact, the vast majority of existing simulation systems have been written in C and C++, or their derivatives.
However, JiST actually out-performs the popular ns2 [13] and also the scalable GloMoSim [22] simulators, even on
sequential benchmarks. Aggressive profile-driven optimizations combined with the latest Java runtimes result in a
simulation system that can even match or exceed the performance of the highly-optimized Parsec [2] runtime! In
this section, we present micro-benchmark results comparing JiST against other simulation systems.

The following measurements were taken on a 1133 MHz Intel Pentium |11 uni-processor machine with 128 MB
of RAM and 512 KB of L2 cache, running the version 2.4.20 stock Redhat 9 Linux kernel with glibc v2.3. We
used the publicly available versions of Java 2 JDK (v1.4.1), Parsec (v1.1.1), GloMoSim (v2.03) and ns2 (v2.26). All
tests were also performed on a second machine — a more powerful and memory rich dual-processor — with identical
absolute memory or relative throughput results.

15.1 Event throughput

Computational throughput is important for simulation scalability. Thus, in the following experiment, we measured
the performance of each of the simulation engines in performing a tight simulation event loop. We began the
simulations at time zero, with an event scheduled to generate another identical event for the subsequent simulation
time step. We ran each simulation for n simulation time quanta, over a wide range of n and measured the actual time
elapsed.

Equivalent, efficient benchmark programs were written in each of the systems. The JiST program looks similar
to the “hello world” program presented earlier. The Parsec program sends null messages among native Parsec
entities using the special send and r ecei ve statements. The GloMoSim test considers the overhead of the node
aggregation mechanism built over Parsec, which was developed to reduce the number of entities and save memory for
scalability (discussed shortly). The GloMoSim test is implemented as an application component, that circumvents
the node communication stack. Both the Parsec and GloMoSim tests are compiled using using pcc - G3, which
is the most optimized setting. ns2 utilizes a split object model, allowing method invocations from either C or Tcl.
The majority of the performance critical code, such as packet handling, is written in C, leaving mostly configuration
operations for Tcl. However, there remain some important components, such as the mobility model, that depend
on Tcl along the critical path. Consequently, we ran two tests: the ns2-C and ns2-Tcl tests correspond to events
scheduled from either of the languages. ns2 performance lies somewhere between these two, widely divergent
values, depending on how frequently each language is employed for a given simulation. Finally, we developed a
baseline test to obtain a lower bound on the computation. It is a program, written in C and compiled with gcc - O3,
that inserts and removes elements from an efficient implementation of an array-based heap.

The results are plotted in Figure 16. Please note the log-log scale of this and subsequent plots. As expected,
all the simulations run in time linear with respect to n. An unexpected result, since Java is interpreted, is that JiST
out-performs all the other systems, including the compiled ones. It also comes within 20% of the baseline measure
of the lower bound. This is due to the impressive JIT dynamic compilation and optimization capabilities of the
modern Java runtime. The optimizations can actually be seen as a kink in the JiST curve during the first fraction
of a second of simulation. To confirm this, we warmed the JiST test with 105 events and observed that the kink
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Figure 16: JiST has higher event throughput and comes within 20% of the baseline lower bound. The kink in
the JiST curve (at left) in the first fraction of a second of simulation is evidence of JIT compilation at work. The
table (at right) shows the time to perform 5 million events and also normalized against both the baseline and JiST
performance.

disappears. The table shows the time taken to perform 5 million events in each of the measured simulation systems
and these figures normalized against the baseline and the performance of JiST. JiST is twice as fast as both Parsec
and ns2-C. GloMoSim and ns2-Tcl are one and two orders of magnitude slower, respectively.

15.2 Message-passing over head

Alongside event throughput, it is important to ensure that inter-entity message passing scales well with the number
of entities. For simplicity of scheduling, many (inefficient) parallel simulation systems utilize kernel threads or
processes to model entities, which can lead to severe degradation with scale.

The systems that we have considered do not exhibit this problem. ns2 is a sequential simulator, so this issue
does not arise. Parsec, and therefore also GloMoSim, models entities using logical processes implemented in user
space and use an efficient simulation time scheduler. JiST implements entities as concurrent objects and also uses
an efficient simulation time scheduler. The overheads of both Parsec and JiST were empirically measured. They are
both negligible and do not represent a scalability constraint.

15.3 Memory utilization

Another important resource that limits scalability is memory. We, therefore, measured the memory consumed by
entities and by queued events in each of the systems. Measuring the memory footprint of entities involves the
allocation of n empty entities and observing the size of the operating system process, for a wide range of n. In the
case of Java, we invoke a garbage collection sweep and then request an internal memory count. Analogously, we
queue a large number of events and observe their memory requirements. The entity and event memory results are
plotted in Figure 17. The base memory footprint of each of the systems is less than 10 MB. Asymptotically, the
process footprint increases linearly with the number of entities or events, as expected.
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# entities (in thousands) # events (in thousands)

memory entity event | 10K nodessim.
JisT 36B 36B 21MB
GloMoSim 368 64B 35MB
ns2 544 B 36 B* 72 MB*
Parsec 28536 B 64B 2885 MB

Figure 17: JiST allocates entities efficiently (at left): comparable to GloMoSim at 36 bytes per entity and over an
order of magnitude less that Parsec or ns2. JiST also allocates events efficiently (at right): comparable to ns2 (in C)
at 36 bytes per queued event and half the size of events in Parsec and GloMoSim. (*) Events scheduled in ns2 via
Tcl will allocate a split object and thereby incur the same memory overhead as entities. The table shows per entity
and per event memory overhead, along with the system memory overhead for a simulation scenario of 10,000 nodes,
without including memory for any simulation data. (*) Note that the ns2 split object model will affect its memory
footprint more adversely than other systems when simulation data is added.

JiST performs well with respect to memory requirements for simulation entities. It performs comparably with
GloMoSim, which uses node aggregation specifically to reduce Parsec’s memory consumption. A GloMoSim “en-
tity” is merely a heap-allocated object containing an aggregation identifier and an event-scheduling heap. In contrast,
each Parsec entity contains its own program counter and logical process stack, the minimum stack size allowed by
Parsec being 20 KB. In ns2, we allocate the smallest split object possible, an instance of Tcl Obj ect , responsible
for binding values across the C and Tcl memory spaces. JiST achieves the same dynamic configuration capability
without requiring the memory overhead of split objects.

JiST also performs well with respect to event memory requirements. Though they store slightly different data,
the C-based ns2 event objects are exactly the same size as JiST events. On the other hand, Tcl-based ns2 events
require the allocation of a new split object per event, thus incurring the larger memory overhead above. Parsec
events require twice the memory of JiST events.

The memory requirements per entity, memenzity, and per event, memeyens, in €ach of the systems are tabulated
in Figure 17. We also compute the memory footprint within each system for a simulation of 10,000 nodes, assuming
approximately 10 entities per node and an average of 5 outstanding events per entity. In other words, we compute:
memgim = 10% x (10 x MeMentity + 50 X MmeMmeyent ). NOte that these figures do not include the fixed memory base
for the process, nor the actual simulation data. These are figures for empty entities and events alone, thus showing
the overhead imposed by each system.
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Note also that adding simulation data would doubly affect ns2, since it stores data in both the Tcl and C memory
spaces. Moreover, Tcl encodes this data internally as strings. The exact memory impact thus varies from simulation
to simulation. As a point of reference, regularly published results of a few hundred wireless nodes occupy more than
100 MB and simulation researchers have scaled ns2 to around 1,500 non-wireless nodes using a process with a 2 GB
memory footprint [19, 16].

16 Advantages of the JiST approach

Aside from performance and scalability, we have mentioned various benefits of the JiST design throughout the

explanations. For reference, we summarize these advantages below.

application-oriented benefits

type safety

event types

event structures

debugging

source and target of simulation events are statically type-checked by the compiler,
eliminating a large class of errors

numerous constants and the associated type-casting code are not required; events
are implicitly typed

numerous data structures used to carry event payloads and the associated event
marshalling code can be eliminated; event payloads are implicitly marshalled
event dispatch location and source entity state are available during event process-
ing; can generate event causality trace to determine the origin of a faulty event

language-oriented benefits

reflection

safety

garbage

collection

Java

allows script-based simulation configuration, debugging and tracing in a manner
that is transparent to the simulation implementation

allows for an object-level isolation of state between entities; ensures that all sim-
ulation time calls pass through the kernel; allows sharing of immutable objects;
provides flexibility in entity state aggregation

memory for objects with long and variable lifetimes, such as network packets, is
automatically managed; facilitates memory savings through sharing of immutable
objects; avoids memory leaks and the need for complex memory protocols

JiST reuses the standard language, libraries, compiler and runtime

system-oriented benefits

inter-process
communication

since entities share the same process space, we pass a pointer and there is no
serialization; there is also no context switch required

Java-based - allows cross-layer optimization between kernel and running simulation for faster
kernel event dispatch and system calls
robustness - strict Java verification ensures that simulations will not crash; garbage collection
protects against memory leaks over time
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rewriting - operates at the bytecode level; does not require source-code access

concurrency - simulation object model and execution semantics support parallel and optimistic
execution transparently with respect to the application
distribution - provides a single system image abstraction that allows for dynamic entity migra-

tion to balance load, memory or network load

hardware-oriented benefits

portability - pure Java: “runs everywhere”
cost - runson COTS clusters (NOW, grid, etc.), as well as more specialized architectures
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17 Getting started

For readers that intend to work on the project, this section explains the general organization of the codebase and how
to get started. Please read the README and STYLE files in the distribution.

17.1 Codeoverview

The software distribution contains the JiST system, small regression test and benchmark simulations, the SWANS
components and simulation driver scripts. The software map below contains only the more significant files and is
intended to be a navigational aid. It is correct as of March 2003.

src - source code
jist/runtinme - JiST simulation framework
rewriting - Rewriter,RewriterFl ow,RewiterVerify,d assTraversal
kernel - Main,Controller
events - Event,Event Locati on,Boot strap, Heap
entities - EntityRef ,Entity,ProxyEntity
systemcalls - Ji st APl ,Ji st API I npl
distributed - Controll erRenpte,Goup
jist/mnisim - regression and benchmark simulations
jist/swans - wireless ad hoc network simulation components for SWANS
jist/swans/field - signal propagation, fading, pathloss and maobility
jist/swans/radio - radio signal transmission and reception
jist/swans/ mac - link layer implementations
j i st/ swans/ net - network layer implementations
jist/swans/route - routing layer implementations
jist/swans/trans - transport layer implementations
jist/swans/app - applications
jist/swans/app/ net - application sockets
jist/swans/app/io - application streams
jist/swans/ m sc - common data structures and utilities
rewriting - Rewriter
runtime - Main
driver - SWANS simulation configuration drivers
bin - execution scripts
lib - required libraries
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files classes lines semi
JiST 29 113 14015 3462

minisim 16 37 2344 724
SWANS 85 220 28613 6535
driver 15 40 4378 1723

146 413 49567 12506

17.2 Compiling

To compile the JiST system, the SWANS simulator and the various example and benchmark scripts, please follow
the following directions:

1. Set your environment variables.

(a) Add the directories for the following executables to your path: j ava, j avac,rm c,j avah.
(b) Add the following directory to your path: <j i st .code>/ bi n.
(c) Set JAVA_HOVE to the Java installation directory.
2. From the JiST sr c directory, execute: make or make. bat. All the necessary library dependencies are
included in | i bs. Specifically, JiST uses the following:
(a) JArgs - Command-line argument processing: htt p: //j ar gs. sour cef or ge. net.
(b) Log4j - Logging framework: htt p: //j akart a. apache. org/ | og4j .
(c) BCEL - Byte-Code Engineering Libary: htt p: //j akart a. apache. or g/ bcel .
(d) BeanShell - Scripting engine: htt p: / / ww. beanshel | . org
(e) Jython - Scripting engine: htt p: // www. j yt hon. org

17.3 Executing

Running JiST is a matter of executing a simulation within JiST within Java. The ji st - h option will provide
syntax help. We list some of the standard uses:

1. jist <simulation>
Local execution of a simulation. <si rmul at i on> is some class in the classpath

2. jist -c <properties> <sinulation>
Run JiST with specific properties file. e.g.: src/ji st. properti esandsrc/ debug. properti es.

3. jist --nocache <sinul ati on>
Disable rewriter caching. The JiST engine caches rewritten simulation class files to improve startup times.

4. jist --bsh <script>
jist --jpy <script>
Use a script to configure a simulation. These invoke the BeanShell and Jython scripting engines, respectively.
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5. jist -S
Start a JiST processing server with a local job queue. Server will listen on the default JiST port (3000), and
process jobs in FIFO order. You can specify an alternative port with- p <port >.

6. jist -S -q
Start a job queue server. This server will listen for incoming simulation jobs, but does not perform processing.
JiST processing servers will connect and dequeue jobs. The default port can be changed as above.

7.jist -S -r host: port
Start a JiST processing server with a remote job queue.

8. jist -r host:port <sinmnulation>
Enqueue a simulation at a job queue. The JiST client will enqueue the simulation and wait for processing to
complete. The client will provide the server with all the classes that it needs and will receive redirected output
and error streams.

9.jist jist.swans. Main <driver>
Or,swans <dri ver>
Runs SWANS simulation. The SWANS command-line syntax can be viewed by running: swans - h.

10. Using the proxy server to connect clients and servers through NAT boxes and firewalls: First, run the Proxy-
Point server somewhere on the Internet: j ava ji st. runti me. ProxyPoi nt.
Then, use the - x switch on clients, servers and the server queue.

17.4 Constants

Various notable constants within the JiST codebase:

constant default purpose

jist/runtime/Main.java
EVENT_TRACE fal se whether to keep event traces (some overhead)
EVENT_TRACE_DEPTH 5 event causality trace depth (0 = no cut-off)
EVENT_LOCATION fal se whether to compute event source locations (high overhead)
REWRITE_CACHE t rue whether rewritten classes should be cached
ASSERT fal se whether various JiST runtime checks should be performed
COUNT_EVENTS fal se whether to count up events of each type (some overhead)

SINGLE_CONTROLLER  true whether to assume a single simulation controller
jist/swans/Main.java
ASSERT fal se whether various SWANS runtime checks should be performed
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18 Summary

In this manual we have described a new approach to simulator construction that leverages virtual machines. We
introduced JiST, a new Java-based simulation framework that executes discrete event simulations both efficiently
and transparently by embedding simulation time semantics directly into the Java execution model. Beyond the fun-
damental simulation time extensions to the Java object model and execution semantics, we also introduced concepts
such as timeless objects, proxy entities, scripting, blocking events and simulation time concurrency. We described
the JiST API in detail, briefly showed that JiST performs efficiently and enumerated the many other benefits inherent
to this approach to simulator construction.
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