
SWANS– Scalable Wireless Ad hoc Network Simulator

User Guide

Rimon Barr
barr@cs.cornell.edu

1 Introduction

Wireless networking research is fundamentally dependent upon simulation. Analytically quantifying the perfor-

mance and complex behavior of even simple protocols on a large scale is often imprecise. On the other hand,

performing actual experiments is onerous: acquiring hundreds of devices, managing their software and configura-

tion, controlling a distributed experiment and aggregating the data, possibly moving the devices around, finding the

physical space for such an experiment, isolating it from interference and generally ensuring ceteris paribus, are but

some of the difficulties that make empirical endeavors daunting.

At a minimum, one would like to simulate networks of many thousands of nodes. However, even though a few

parallel discrete event simulation environments have been shown to scale to networks of beyond 104 nodes, slow

sequential network simulators remain the norm [8]. In particular, most published ad hoc network results are based

on simulations of few nodes only (usually fewer than 500 nodes), for a short duration, and over a small geographical

area. Larger simulations usually compromise on simulation detail. For example, some existing simulators simulate

only at the packet level without considering the effects of signal interference. Others reduce the complexity of the

simulation by curtailing the simulation duration, reducing the node density, or restricting mobility.

SWANS is a Scalable Wireless Ad hoc Network Simulator built atop the JiST platform, a general-purpose

discrete event simulation engine. SWANS was created primarily because existing wireless network simulation tools

are not sufficient for current research needs. SWANS also serves as a validation of the virtual machine-based

approach to simulator construction.

2 Alternatives

The two most popular simulators in the wireless networking space are ns2 and GloMoSim. The ns2 network sim-

ulator [5] has a long history with the networking community, is widely trusted, and has been extended to support

mobility and wireless networking protocols. It is built as a monolithic, sequential simulator, in the library-systems

simulator design. ns2 uses a clever “split object” design, which allows Tcl-based script configuration of C-based ob-

ject implementations. This approach is convenient for users. However, it incurs a substantial memory overhead and

increases the complexity of simulation code. Researchers have extended ns2 to conservatively parallelize its event

loop [9]. However, this technique has proved primarily beneficial for distributing ns2’s considerable memory re-

quirements. Based on numerous published results, it is not easy to scale ns2 beyond a few hundred simulated nodes.

SWANS User Guide Page 1 of 15 March 19, 2004

Simulation researchers have shown ns2 to scale, with difficulty and substantial hardware resources, to simulations

of a few thousand nodes [8].

GloMoSim [10] is a newer simulator written in Parsec [1], a highly-optimized C-like simulation language. Glo-

MoSim has has recently gained popularity within the wireless ad hoc networking community. It was designed

specifically for scalable simulation by explicitly supporting efficient, conservatively parallel execution with looka-

head. The sequential version of GloMoSim is freely available. The conservatively parallel version has been com-

mercialized as QualNet. Due to Parsec’s large per-entity memory requirements, GloMoSim implements a technique

called “node aggregation,” wherein the state of multiple simulation nodes are multiplexed within a single Parsec

entity. While this effectively reduces memory consumption, it incurs a performance overhead and also increases

code complexity. The aggregation of state also renders speculative execution techniques impractical. GloMoSim

has been shown to scale to 10,000 nodes on large, specialized multi-processor machines.

3 Design highlights

The SWANS software is organized as independent software components that can be composed to form complete

wireless network or sensor network simulations, as shown in Figure 1. Its capabilities are similar to ns2 [5] and

GloMoSim [10], two popular wireless network simulators. There are components that implement different types of

applications; networking, routing and media access protocols; radio transmission, reception and noise models; signal

propagation and fading models; and node mobility models. Instances of each component type are shown italicized

in the figure.

Notably, the development of SWANS has been relatively painless. Since JiST inter-entity message creation and

delivery is implicit, as well as message garbage collection and typing, the code is compact and intuitive. Components

in JiST consume less than half of the code (in uncommented line counts) of comparable components in GloMoSim,

which are already smaller than their counterpart implementations in ns2.

Every SWANS component is encapsulated as a JiST entity: it stores it own local state and interacts with other

components via exposed event-based interfaces. SWANS contains components for constructing a node stack, as well

components for a variety of mobility models and field configurations. This pattern simplifies simulation development

by reducing the problem to creating relatively small, event-driven components. It also explicitly partitions the

simulation state and the degree of inter-dependence between components, unlike the design of ns2 and GloMoSim. It

also allows components to be readily interchanged with suitable alternate implementations of the common interfaces

and for each simulated node to be independently configured. Finally, it also confines the simulation communication

pattern. For example, Application or Routing components of different nodes cannot communicate directly.

They can only pass messages along their own node stacks.

Consequently, the elements of the simulated node stack above the Radio layer become trivially parallelizable,

and may be distributed with low synchronization cost. In contrast, different Radios do contend (in simulation time)

over the shared Field entity and raise the synchronization cost of a concurrent simulation execution. To reduce

this contention in a distributed simulation, the simulated field may be partitioned into non-overlapping, cooperating

Field entities along a grid.

It is important to note that, in JiST, communication among entities is very efficient. The design incurs no

serialization, copy, or context-switching cost among co-located entities, since the Java objects contained within

SWANS User Guide Page 2 of 15 March 19, 2004

�

�

�

�

N
od

e

N
od

e

N
od

e

. . . .

N
od

e

N
od

e

N
od

e

. . . .

N
od

e

N
od

e

N
od

e

.

Field
FreespaceRaleigh2D

Field
FreespacePathloss−RaleighFading−2D−Field

Field
FreespaceRaleigh2D

Field
FreespaceRaleigh2D

N
od

e

N
od

e

. . . .

Application
ConstBitRate

Transport
UDP

Network
IPv4

MAC
802.11b

Radio
NoiseAdd.

Mobility
RandWayPt.

Routing
ZRP

N
od

e

Figure 1: The SWANS simulator consists of event-driven components that can be configured and composed to
form the desired wireless network simulation. Different classes of components are shown in a typical arrangement
together with specific instances of component implementations in italics.

events are passed along by reference via the simulation time kernel. Simulated network packets are actually a chain

of nested objects that mimic the chain of packet headers added by the network stack. Moreover, since the packets

are timeless by design, a single broadcasted packet can be safely shared among all the receiving nodes and the very

same object sent by an Application entity on one node will be received at the Application entity of another

node. Similarly, if we use TCP in our node stack, then the same object will be referenced in the sending node’s TCP

retransmit buffer. This design conserves memory, which in turn allows for the simulation of larger network models.

Dynamically created objects such as packets can traverse many different control paths within the simulator and

can have highly variable lifetimes. The accounting for when to free unused packets is handled entirely by the

garbage collector. This not only simplifies the memory management protocol, but also eliminates a common source

of memory leaks that can accumulate over long simulation runs.

The partitioning of node functionality into individual, fine-grained entities provides an additional degree of

flexibility for distributed simulations. The entities can be vertically aggregated, as in GloMoSim, which allows

communication along a network stack within a node to occur more efficiently. However, the entities can also be

horizontally aggregated to allow communication across nodes to occur more efficiently. In JiST, this reconfiguration

can happen without any change to the entities themselves. The distribution of entities across physical hosts running

the simulation can be changed dynamically in response to simulation communication patterns and it does not need

to be homogeneous.

SWANS User Guide Page 3 of 15 March 19, 2004

4 Embedding Java-based network applications

SWANS has a unique and important advantage over existing network simulators. It can run regular, unmodified Java

network applications over the simulated network, thus allowing for the inclusion of existing Java-based software,

such as web servers, peer-to-peer applications and application-level multicast protocols. These applications do not

merely send packets to the simulator from other processes. They operate in simulation time within the same JiST

process space, allowing far greater scalability. As another example, one could perform a similar transformation on

Java-based database engines or file-system applications to model disk accesses.

We achieve this integration via a special AppJava application entity designed to be a harness for Java appli-

cations. This harness inserts an additional rewriting phase into the JiST kernel, which substitutes SWANS socket

implementations for any Java counterparts that occur within the application. These SWANS sockets have identi-

cal semantics, but send packets through the simulated network. Specifically, the input and output methods are still

blocking events (built using JiST continuations). To support these blocking semantics, JiST automatically modifies

the necessary application code into continuation-passing style, which allows the application to operate within the

event-oriented simulation time environment.

5 Efficient signal propagation

Modeling signal propagation efficiently is essential for scalable wireless simulation. When a simulated radio entity

transmits a signal, the SWANS Field entity must deliver that signal to all radios that could be affected, after

considering fading, gain, and pathloss. Some small subset of the radios on the field will be within reception range

and a few more radios will be affected by the interference above some sensitivity threshold. The remaining majority

of the radios will not be tangibly affected by the transmission.

ns2 and GloMoSim implement a naı̈ve signal propagation algorithm, which uses a slow, O(n), linear search

through all the radios to determine the node set within the reception neighborhood of the transmitter. This clearly

does not scale as the number of radios increases. ns2 has recently been improved with a grid-based algorithm [6].

We have implemented both of these in SWANS. In addition, we have a new, more efficient algorithm that uses

hierarchical binning. The spatial partitioning imposed by each of these data structures is depicted in Figure 2.

In the grid-based or flat binning approach, the field is sub-divided into a grid of node bins. A node location

update requires constant time, since the bins divide the field in a regular manner. The neighborhood search is then

performed by scanning all bins within a given distance from the signal source. While this operation is also of constant

time, given a sufficiently fine grid, the constant is sensitive to the chosen bin size: bin sizes that are too large will

capture too many nodes and thus not serve their search-pruning purpose; bin sizes that are too small will require the

scanning of many empty bins, especially at lower node densities. A reasonable bin size is one that captures a small

number of nodes per bin. Thus, the bin size is a function of the local radio density and the signal propagation radius.

However, these parameters may change in different parts of the field, from radio to radio, and even as a function of

time, for example, as in the case of power-controlled transmissions.

We improve on the flat binning approach. Instead of a flat sub-division, the hierarchical binning implementation

recursively divides the field along both the x and y-axes. The node bins are the leaves of this balanced, spatial

decomposition tree, which is of height equal to the number of divisions, or log4(
field size
bin size

). The structure is similar

SWANS User Guide Page 4 of 15 March 19, 2004

�

�

	
linear lookup flat binning hierarchical binning

Figure 2: Alternative spatial data structures for radio signal propagation: Efficient signal propagation is critical for
wireless network simulation performance. Hierarchical binning of radios on the field allows location updates to be
performed in expected amortized constant time and the set of receiving radios to be computed in time proportional
to its size.

to a quad-tree, except that the division points are not the nodes themselves, but rather fixed coordinates. Note that the

height of the tree changes only logarithmically with changes in the bin or field size. Furthermore, since nodes move

only a short distance between updates, the expected amortized height of the common parent of the two affected

node bins is O(1). This, of course, is under the assumption of a reasonable node mobility that keeps the nodes

uniformly distributed. Thus, the amortized cost of updating a node location is constant, including the maintenance

of inner node counts. When scanning for node neighbors, empty bins can be pruned as we descend spatially. Thus,

the set of receiving radios can be computed in time proportional to the number of receiving radios. Since, at a

minimum, we will need to simulate delivery of the signal at each simulated radio, the algorithm is asymptotically as

efficient as scanning a cached result, as proposed in [2], even assuming perfect caching. But, the memory overhead

of hierarchical binning is minimal. Asymptotically, it amounts to limn→∞

∑log4n
i=1

n
4i = n

3
. The memory overhead

for function caching is also O(n), but with a much larger constant. Furthermore, unlike the cases of flat binning or

function caching, the memory accesses for hierarchical binning are tree structured and thus exhibit better locality.

6 Components

This section enumerates the various SWANS components that are available (as of this writing). Additional compo-

nents can be readily implemented. Users are encouraged to contribute components, both with and without source, to

the research community.

6.1 Physical

The SWANS physical layer components are responsible for modeling signal propagation among radios as well as

the mobility of nodes. Radios make transmission downcalls to the simulation “field” and other radios on the “field”

receive reception upcalls from it, if they are within range of the signal. Both the pathloss and fading models are

functions that depend on the source and destination radio locations. Pathloss models include free-space, two-ray and

table-driven pathloss. Fading models include none, Raleigh and Rician fading. Node mobility is implemented as an

interface-based discretized model. Upon each node movement, the model is queried to schedule the next movement.

The mobility models that are implemented include static and random-waypoint.

SWANS User Guide Page 5 of 15 March 19, 2004

jist.swans.field.*

interface class description

FieldInterface Field centralized node container that performs mobility and sig-

nal propagation with fading and pathloss

Fading Fading.None zero fading model

Fading.Raleigh Raleigh fading model

Fading.Rician Rician fading model

Pathloss Pathloss.FreeSpace pathloss model based purely on distance

Pathloss.TwoRay pathloss model that incorporates ground reflection

Spatial Spatial.Linear signal propagation and location update performed via

linked list of radios

Spatial.Grid as above, but performed using a more efficient flat grid

structure of small “Linear” bins

Spatial.HierGrid as above, but performed using a more consistently efficient

hierarchical grid structure

...TiledWraparound tile inner spatial structure in 3x3 grid so as to wrap field

edges around into a torus

Placement Placement.Random uniformly random initial node placement

Mobility Mobility.Static no mobility

...RandomWaypoint pick a random “waypoint” and walk towards it with some

random velocity, then pause and repeat.

...RandomWalk pick a direction, walk a certain distance in that direction,

with some fixed and random component, reflecting off

walls as necessary, then pause for some time and repeat.

Mobility.Teleport pick a random location and teleport to it, then pause for

some time, and repeat.

The SWANS radio receives upcalls from the field entity and passes successfully received packets on to the

link layer. It also receives downcalls from the link layer entity and passes them on to the field for propagation.

We have implemented an independent interference radio, as in ns2, as well as an additive interference radio, as in

GloMoSim. The independent interference model considers only signals destined for the target radio as interference.

The additive model correctly considers all signals as contributing to the interference. Both radios are half-duplex, as

in 802.11b. Radios are parameterized by frequency, transmission power, reception sensitivity and threshold, antenna

gain, bandwidth and error model. Error models include bit-error rate and signal-to-noise threshold.

jist.swans.radio.*

interface class description

RadioInterface RadioNoiseIndep interference at radio consists only of other signals above a

threshold that are destined for that same radio

RadioNoiseAdditive interference consists of all signals above a threshold

SWANS User Guide Page 6 of 15 March 19, 2004

jist.swans.radio.*

interface class description

none RadioInfo unique and shared radio parameters

6.2 Link

The SWANS link layer entity receives upcalls from the radio entity and passes them to the network entity. It also

receives downcalls from the network layer and passes them to the radio entity. The link layer entity is responsible

for the implementation of a chosen medium access protocol and for encapsulating the network packet in a frame.

Link layer implementations include IEEE 802.11b and a “dumb” protocol. The 802.11b implementation includes

the complete DCF functionality, with retransmission, NAV and backoff functionality. It does not include the PCF

(access-point), fragmentation or frequency hopping functionality found in the specification. This is on par with the

GloMoSim and ns2 implementations. The “dumb” link entity will only transmit a signal if the radio is currently idle.

jist.swans.mac.*

interface class description

MacInterface MacDumb transmits only if transceiver is idle

Mac802 11 802.11b implementation

MacLoop loopback interface

none MacAddress mac address

MacInfo unique and shared mac parameters

6.3 Network

The SWANS network entity receives upcalls from the link entity and passes them to the appropriate packet handler,

based on the packet protocol information. The SWANS network entity also receives downcalls from the routing and

transport entities, which it enqueues and eventually passes to the link entity. Thus, the network entity is the nexus of

multiple network interfaces and multiple network packet handlers. The network interfaces are indexed sequentially

from zero. The packet handlers are associated with IETF standard protocol numbers, but are mapped onto a smaller

index space, to conserve memory, through a dynamic protocol mapper that is shared across the entire simulation.

Each network interface is associated with a packet queue, which can handle packet priorities and perform RED.

The packets are dequeued and sent to the appropriate link entity using a token protocol to ensure that only one

packet is transmitted at a time per interface. The network layer sends packets to the routing entity to receive next

hop information and allows the routing entity to peek at all incoming packets. It also encapsulates message with

the appropriate IP packet header. The network layer uses an IPv4 implementation. Loopback and broadcast are

implemented.

jist.swans.net.*

interface class description

NetInterface NetIp IPv4 implementation

PacketLoss Zero zero network layer packet loss

Uniform independent, random drop with fixed probability

SWANS User Guide Page 7 of 15 March 19, 2004

jist.swans.net.*

interface class description

none NetAddress network address

MessageQueue outgoing message queues

6.4 Routing

The routing entity recieves upcalls from the network entity with packets that require next-hop information. It also

receives upcalls that allow it to peek at all packets that arrive at a node. It sends downcalls to the network entity

with next-hop information when it becomes available. SWANS implements the Zone Routing Protocol (ZRP) [3],

Dynamic Source Routing (DSR) [4] and ad hoc On-demand Distance Vector Routing (AODV) [7].

jist.swans.route.*

interface class description

RouteInterface RouteZrp Zone Routing Protocol

RouteDsr Dynamic Source Routing protocol

RouteAodv Ad hoc On-demand Distance Vector routing protocol

6.5 Transport

The SWANS transport entity receives upcalls from the network entity with packets of the appropriate network pro-

tocol and passes them on to the appropriate registered transport protocol handler. It also receives downcalls from

the application entity, which it passes on to the network entity. The two implemented transport protocols are UDP

and TCP, which encapsulate packets with the appropriate packet headers. UDP socket, TCP socket and TCP server

socket implementations actually exist within the application entity. The primary reason for this decision is that

these implementations are modeled after corresponding Java classes, which force the use non-timeless objects. The

DatagramSocket, for example, uses a mutable DatagramPacket to provide data. In all other respects, in-

cluding correctness and performance, this decision, to move the socket implementations into the application entity,

is inconsequential.

SWANS installs a rewriting phase that substitutes identical SWANS socket implementations for the Java equiv-

alents within node application code. This allows existing Java networking applications to be run as-is over the

simulated SWANS network. The SWANS implementations use continuations and a blocking channel in order to im-

plement blocking calls. The entire application is conveniently frozen, for example, at the point that it calls receive

until its packet arrives through the simulated network. Thus, we have a powerful Java simulation “sandwich”: Java

networking applications running over SWANS, running over JiST, running within the JVM.

There is an interesting complexity in this transformation that is worth mentioning. As discussed previously,

since constructors can not be invoked twice, they may not be continuable. However, certain socket constructors,

such as a TCP socket, have blocking semantics, since they require a connection handshake. We circumvent this

problem by rewriting constructor invocations into two separate invocations. The internal socket implementation has

a non-blocking constructor, which does nothing more than store the initialization arguments and a second blocking

SWANS User Guide Page 8 of 15 March 19, 2004

method that will always be called immediately after the constructor. This second method can safely perform the

required blocking operations.

jist.swans.trans.*

interface class description

TransInterface TransUdp UDP implementation, usually interacts with jist.swans.app.net.

UdpSocket.

TransTcp TCP implementation, usually interacts with jist.swans.app.net.

TcpServerSocket and .TcpSocket and various blocking streams

implementations in jist.swans.app.io.*

6.6 Application

At the top of our network stack, we have the application entities, which make downcalls to the transport layer

and receive upcalls from it, usually via SWANS sockets or streams that mimic their Java equivalents. The most

generic and useful kind of application entity is a harness for regular Java applications. One can run standard, un-

modified Java networking application atop SWANS. These Java applications operate within a context that includes

the correct underlying transport implementation for the particular node. Thus, these applications can open regu-

lar communication sockets, which will actually transmit packets from the appropriate simulated node, through the

simulated network. SWANS implements numerous socket and stream types in the jist.swans.app.net and

jist.swans.app.io packages. Applications can also connect to lower-level entities. The heartbeat node dis-

covery application, for example, operates at the network layer. It circumvents the transport layer and communicates

directly with the network entity.

jist.swans.app.*

interface class description

AppInterface AppJava versatile application entity that allows regular Java network applica-

tions to be executed within SWANS

AppHeartbeat runs heartbeat protocol for node discovery

item package implementations

socket net UdpSocket, TcpServerSocket, TcpSocket

stream io InputStream, OutputStream, Reader, Writer, InputStreamReader,

OutputStreamWriter, BufferedReader, BufferedWriter

6.7 Common

There are various interfaces that are common across a number of SWANS layers and tie the system together. The

most important interface of this kind is Message. It represents a packet transfered along the network stack and it

must be timeless (or immutable). Components at various layers define their own message structures. Many of these

instances recursively store messages within their payload, thus forming a message chain that encodes the hierachical

SWANS User Guide Page 9 of 15 March 19, 2004

header structure of the message. Other common elements include a node, node location, protocol number mapper

and miscellaneous utilities.

jist.swans.misc.*

interface package implementations

Message jist.swans.misc MessageBytes, MessageNest

jist.swans.mac Mac802 11.RTS, .CTS, .ACK, .DATA, etc.

jist.swans.net NetIp.IpMessage

jist.swans.route RouteZrp.IARP, RouteDsr.RREQ, etc.

jist.swans.trans TransUdp.UdpMessage, TransTcp.TcpMessage, etc.

7 Performance

In this section, we show that SWANS perform surprisingly well: we compare SWANS with the two most popular

ad hoc network simulators: ns2 and GloMoSim. We selected these because they are widely used, freely available

sequential network simulators designed in the systems-based and language-based approaches, respectively.

We present macro-benchmark results running full SWANS simulations. Unless otherwise noted, the following

measurements were taken on a 2.0 GHz Intel Pentium 4 single-processor machine with 512 MB of RAM and 512 KB

of L2 cache, running the version 2.4.20 stock Redhat 9 Linux kernel with glibc v2.3. We used the publicly available

versions of Java 2 JDK (v1.4.2), Parsec (v1.1.1), GloMoSim (v2.03) and ns2 (v2.26). Each data point presented

represents an average of at least five runs for the shorter time measurements. All tests were also performed on a

second machine – a more powerful and memory rich dual-processor – giving identical absolute memory results and

relative results for throughput (i.e. scaled with respect to processor speed).

7.1 Beaconing

In the following experiment, we benchmarked JiST running a full SWANS ad hoc wireless network simulation. We

measured the performance of simulating an ad hoc network of nodes running a UDP-based beaconing node discovery

protocol (NDP) application. Node discovery protocols are an integral component of many ad hoc network protocols

and applications [3, 4]. Also, this experiment is representative both in terms of both code coverage and network

traffic: it utilizes the entire network stack and transmits over every link in the network every few seconds. However,

the experiment is still simple enough that we have high confidence of simulating exactly the same operations across

the different platforms, SWANS, GloMoSim and ns2, which permits comparison and is difficult to achieve with

more complex protocols. Finally, we were also able to validate the simulation results against analytical estimates.

We constructed the following identical scenario in each of the simulation platforms. The application at each

node maintains a local neighbor table and beacons every 2 to 5 seconds, chosen from a uniform random distribution.

Each wireless node is placed randomly in the network coverage area and moves with random-waypoint mobility [4]

at speeds of 2 to 10 meters per second selected at random and with pause times of 30 seconds. Mobility in ns2 was

turned off, because the pre-computed trajectories resulted in excessively long configuration times and memory con-

sumption. Each node is equipped with a standard radio configured with typical 802.11b signal strength parameters.

SWANS User Guide Page 10 of 15 March 19, 2004

We ran simulations with widely varying numbers of nodes, keeping the node density constant, such that each node

transmission is received, on average, by 4 to 5 nodes and interferes with approximately 35 others. Above each radio,

we constructed a stack of 802.11b MAC, IPv4 network, UDP transport, and NDP application entities.

We ran this network model for 15 simulated minutes and measured overall memory and time required for the

simulation. For memory, we included the base process memory, the memory overhead for simulation entities, and

all the simulation data at the beginning of the simulation. For time, we included the simulation setup time, the event

processing overheads, and the application processing time.

The throughput results are plotted both on log-log and linear scales in Figure 3. As expected, the simulation

times are quadratic functions of n, the number of nodes, when using the naı̈ve signal propagation algorithm. Even

without node mobility, ns2 is highly inefficient. SWANS outperforms GloMoSim by a factor of 2. SWANS-hier

uses the improved hierarchical binning algorithm to perform signal propagation instead of scanning through all the

radios. As expected, SWANS-hier scales linearly with the number of nodes.

The memory footprint results are plotted in Figure 4 on log-log scale. JiST is more efficient than GloMoSim

and ns2 by almost an order and two orders of magnitude, respectively. This allows SWANS to simulate much larger

networks. The memory overhead of hierarchical binning is asymptotically negligible.

Finally, we tested SWANS with some very large networks. We ran the same simulations on dual-processor

2.2GHz Intel Xeon machines (though only one processor was used) with 2GB of RAM running Windows 2003.

The results are plotted in Figure 5 on a log-log scale. We show SWANS both with the naı̈ve propagation algorithm

and with hierarchical binning, and we observe linear behavior for the latter in all simulations up to networks of one

million nodes. The 106 node simulation consumed just less than 1GB of memory on initial configuration, ran with

an average footprint of 1.2GB (fluctuating due to delayed garbage collection), and completed within 5 1

2
hours. This

exceeds previous ns2 and GloMoSim results by two orders of magnitude, using only commodity hardware.

7.2 Zone routing protocol

Next, we ran some large experiments with an actual ad hoc wireless network routing protocol, ZRP (Zone Routing

Protocol). Figure 6 shows the time and memory required to simulate different size networks at a fixed density of

10 neighbors per node. The experiments were run on a dual-processor 2.8 GHz Intel Xeon machine with 2GB of

RAM and a similar software configuration to the previous Linux machine. The memory requirements grow linearly

with the size of the network. The time required grows slightly faster than linear due to garbage collection overhead

(using default GC parameters).

It is not clear that simulating such a large flat ad hoc network is meaningful, except to exhibit SWANS scalability

and performance. However, one could certainly simulate many smaller, connected flat ad hoc networks with compa-

rable workload. Regardless, these results far exceed GloMoSim or ns2 capabilities, by approximately an order and

two orders of magnitude, respectively. Smaller networks run proportionally faster and in proportionally less memory

in JiST than in either GloMoSim or ns2.

SWANS User Guide Page 11 of 15 March 19, 2004

100 1000 10000 100000
1s

10s

1m

10m

1h

10h
Time for 15 minutes NDP simulation

network size (nodes)

ti
m

e

SWANS (scan)
GloMoSim
ns2
SWANS (hier)

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120
Time for 15 minutes NDP simulation

network size (nodes)

ti
m

e
(i

n
 m

in
u

te
s)

SWANS (scan)
GloMoSim
ns2
SWANS (hier)

(a) log-log scale (b) linear scale

Figure 3: SWANS significantly outperforms both ns2 and GloMoSim in simulations of the node discovery protocol.

10 100 1000 10000 100000 1e+06
0.1

1

10

100

1000
Memory for NDP simulation

network size (nodes)

m
em

o
ry

 c
o

n
su

m
ed

 (
in

 M
B

)

SWANS (scan)
GloMoSim
ns2
SWANS (hier)

nodes simulator time memory
500 SWANS 54 s 700 KB

GloMoSim 82 s 5759 KB
ns2 7136 s 58761 KB
SWANS-hier 43 s 1101 KB

5,000 SWANS 3250 s 4887 KB
GloMoSim 6191 s 27570 KB
SWANS-hier 430 s 5284 KB

50,000 SWANS 312019 s 47717 KB
SWANS-hier 4377 s 49262 KB

Figure 4: SWANS can simulate larger network models due to its more efficient use of memory.

SWANS User Guide Page 12 of 15 March 19, 2004

10 10^2 10^3 10^4 10^5 10^6
1s

10s

1m

10m

1h

10h
Time for 2 minutes NDP simulation

network size (nodes)

ti
m

e

SWANS (hier)
SWANS (scan)

Figure 5: SWANS scales to networks of 106 wireless nodes. The figure shows the time for a sequential simulation
of a node discovery protocol in a wireless ad hoc network running on a commodity machine.

10 10^2 10^3 10^4 10^5 10^6
1s

10s

1m

10m

1h

10h
Large ZRP simulations: t=120s, neighbors=10

network size (nodes)

ti
m

e

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

m
em

o
ry

 (
in

 G
B

)

running time average memory

nodes time avg.memory max.memory
10,000 3m57s 72MB 94MB

100,000 41m36s 367MB 476MB
400,000 3h52m 1.30GB 1.57GB

Figure 6: SWANS simulates 400,000 nodes at a density of 10 neighbors per node, each running ZRP, on a 2.8GHz
machine with 2GB of memory.

SWANS User Guide Page 13 of 15 March 19, 2004

8 Summary

The SWANS simulator runs over JiST, combining the traditional systems-based (e.g., ns2) and languages-based

(e.g., GloMoSim) approaches to simulation construction. SWANS is able to simulate much larger networks and has

a number of other advantages over existing tools. We leverage the JiST design within SWANS to:

• achieve high simulation throughput: Simulation events among the various entities, such as packet transmis-

sions, are performed with no memory copy and no context switch. The system also continuously profiles

running simulations and dynamically performs code inlining, constant propagation and other important opti-

mizations, even across entity boundaries. This is important, because many stable simulation parameters are

not known until the simulation is running. Greater than 10× speedups have been observed.

• save memory: Memory is critical for simulation scalability. Automatic garbage collection of events and entity

state not only improves robustness of long-running simulations by preventing memory leaks, it also saves

memory by facilitating more sophisticated memory protocols. For example, network packets are modeled as

immutable objects, allowing a single copy to be shared across multiple nodes. This saves the memory (and

time) of multiple packet copies on every transmission. A different example of memory savings in SWANS is

the use of soft references for storing cached computations, such as routing tables. These routing tables can be

automatically collected, as necessary, to free up memory.

• run standard Java applications: SWANS can run existing Java network applications, such as web servers and

peer-to-peer applications, over the simulated network without modification. The application is automatically

transformed to use simulated sockets and into a continuation-passing style. The original network applica-

tions are run within the same process as SWANS, which increases scalability by eliminating the considerable

overhead of process-based isolation.

In addition to the simulator design, it is also essential to model wireless signal propagation efficiently, since

this computation is performed on every packet transmission. The hierarchical binning data structure is allows node

location updates in expected amortized constant time and receiver node set computations in time proportional to the

number of receivers. The combination of these attributes leads to a flexible and efficient simulator. We hope that the

performance of SWANS will facilitate further research into scalable ad hoc network protocols.

SWANS User Guide Page 14 of 15 March 19, 2004

References

[1] R. L. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, and H. Y. Song. Parsec: A parallel simulation environ-

ment for complex systems. IEEE Computer, 31(10):77–85, Oct. 1998.

[2] A. Boukerche, S. K. Das, and A. Fabbri. SWiMNet: A scalable parallel simulation testbed for wireless and mobile

networks. Wireless Networks, 7:467–486, 2001.

[3] Z. J. Haas. A new routing protocol for the reconfigurable wireless networks. In IEEE Conference on Universal Personal

Comm., Oct. 1997.

[4] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless networks. In Mobile Computing. Kluwer

Academic Publishers, 1996.

[5] S. McCanne and S. Floyd. ns (Network Simulator) at http://www-nrg.ee.lbl.gov/ns, 1995.

[6] V. Naoumov and T. Gross. Simulation of large ad hoc networks. In ACM MSWiM, pages 50–57, 2003.

[7] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector routing. In Workshop on Mobile Computing Syst. and

Apps., pages 90–100, Feb. 1999.

[8] G. Riley and M. Ammar. Simulating large networks: How big is big enough? In Conference on Grand Challenges for

Modeling and Sim., Jan. 2002.

[9] G. Riley, R. M. Fujimoto, and M. A. Ammar. A generic framework for parallelization of network simulations. In

MASCOTS, Mar. 1999.

[10] X. Zeng, R. L. Bagrodia, and M. Gerla. GloMoSim: a library for parallel simulation of large-scale wireless networks. In

PADS, May 1998.

SWANS User Guide Page 15 of 15 March 19, 2004

