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Introduction 
 
The Ad-Hoc On-demand Distance Vector (AODV) routing protocol [2] is one of several 
published routing protocols for mobile ad-hoc networking.  Wireless ad-hoc routing 
protocols such as AODV are currently an area of much research among the networking 
community.  Thus, tools for simulating these protocols are very important. 
 
For my project, I have implemented the AODV protocol as part of a scalable wireless ad 
hoc network simulation (SWANS).  SWANS is built upon a novel Java-based simulation 
framework called JiST [1]. 
 
Since one of the goals is scalability, I have strived to make the code as efficient as 
possible.  For example, I implemented an expanding ring search algorithm to limit the 
flood of RREQ messages.  I also attempted to keep memory utilization low by doing 
things like capping buffer sizes, removing expired entries, and by reducing the number of 
events.  Finally, I used efficient data structures, such as hash tables, to improve 
performance. 
 
The code is correct, to the best of my knowledge.  Throughout the development process, I 
have used simulation programs which I have written to test and harden the code.   
 
In the remainder of this report, I describe my protocol design, discuss performance 
results, and give an overview of the code for future developers. 
 

Protocol Design 
 
My implementation of AODV is based on a recent draft of the AODV specification [2].  I 
have implemented all the essential functionality of AODV, including: 

• RREQ and RREP messages (for route discovery) 
• RERR messages, HELLO messages, and precursor lists (for route maintenance) 
• Sequence numbers 
• Hop counts 
• Expanding ring search 

Some functionality described in the specification has been omitted, such as Gratuitous 
RREP messages, RREP acknowledgements, and multicast support, because they are 
either not essential to the algorithm, or inapplicable given our network model. 
 



The Basic Protocol 
 
Each AODV router is essentially a state machine that processes incoming requests from 
the SWANS network entity.  When the network entity needs to send a message to another 
node, it calls upon AODV to determine the next-hop. 
 
Whenever an AODV router receives a request to send a message, it checks its routing 
table to see if a route exists.  Each routing table entry consists of the following fields: 

• Destination address 
• Next hop address 
• Destination sequence number 
• Hop count 

If a route exists, the router simply forwards the message to the next hop.  Otherwise, it 
saves the message in a message queue, and then it initiates a route request to determine a 
route.  The following flow chart illustrates this process: 
 

 
Figure 1 

 
Upon receipt of the routing information, it updates its routing table and sends the queued 
message(s). 
 
AODV nodes use four types of messages to communicate among each other. Route 
Request (RREQ) and Route Reply (RREP) messages are used for route discovery.  Route 
Error (RERR) messages and HELLO messages are used for route maintenance.  The 
following sections describe route determination and route maintenance in greater detail. 



 
AODV Route Discovery 
 
 When a node needs to determine a route to a destination node, it floods the 
network with a Route Request (RREQ) message.  The originating node broadcasts a 
RREQ message to its neighboring nodes, which broadcast the message to their neighbors, 
and so on.  To prevent cycles, each node remembers recently forwarded route requests in 
a route request buffer (see next section).  As these requests spread through the network, 
intermediate nodes store reverse routes back to the originating node.  Since an 
intermediate node could have many reverse routes, it always picks the route with the 
smallest hop count. 

When a node receiving the request either knows of a “fresh enough” route to the 
destination (see section on sequence numbers), or is itself the destination, the node 
generates a Route Reply (RREP) message, and sends this message along the reverse path 
back towards the originating node.  As the RREP message passes through intermediate 
nodes, these nodes update their routing tables, so that in the future, messages can be 
routed though these nodes to the destination. 

Notice that it is possible for the RREQ originator to receive a RREP message 
from more than one node.  In this case, the RREQ originator will update its routing table 
with the most “recent” routing information; that is, it uses the route with the greatest 
destination sequence number.  (See section on sequence numbers). 

 
The Route Request Buffer 
 
 In the flooding protocol described above, when a node originates or forwards a 
route request message to its neighbors, the node will likely receive the same route request 
message back from its neighbors.  To prevent nodes from resending the same RREQs 
(causing infinite cycles), each node maintains a route request buffer, which contains a list 
of recently broadcasted route requests.  Before forwarding a RREQ message, a node 
always checks the buffer to make sure it has not already forwarded the request. 
 RREQ messages are also stored in the buffer by a node that originates a RREP 
message.  The purpose for this is so a node does not send multiple RREPs for duplicate 
RREQs that may have arrived from different paths.  The exception is if the node receives 
a RREQ with a better route (i.e. smaller hop count), in which case a new RREP will be 
sent. 

Each entry in the route request buffer consists of a pair of values: the address of 
the node that originated the request, and a route request identification number (RREQ id).  
The RREQ id uniquely identifies a request originated by a given node.  Therefore, the 
pair uniquely identifies a request across all nodes in the network. 

To prevent the route request buffers from growing indefinitely, each entry expires 
after a certain period of time, and then is removed.  Furthermore, each node’s buffer has a 
maximum size.  If nodes are to be added beyond this maximum, then the oldest entries 
will be removed to make room. 
 



 
Expanding Ring Search 
 
 The flooding protocol described above has a scalability problem, because 
whenever a node requests a route, it sends a message that passes through potentially 
every node in the network.  When the network is small, this is not a major concern.  
However, when the network is large, this can be extremely wasteful, especially if the 
destination node is relatively close to the RREQ originator.  Preferably, we would like to 
set the TTL value on the RREQ message to be just large enough so that the message 
reaches the destination, but no larger.  However, it is difficult for a node to determine this 
optimal TTL without prior global knowledge of the network. 

To solve this problem, I have implemented an expanding ring search algorithm, 
which works as follows.  When a node initiates a route request, it first broadcasts the 
RREQ message with a small TTL value (say, 1).  If the originating node does not receive 
a RREP message within a certain period of time, it rebroadcasts the RREQ message with 
a larger TTL value (and also a new RREQ identifier to distinguish the new request from 
the old ones).  The node continues to broadcast messages with increasing TTL and RREQ 
ID values until it receives a route reply. 
 If the TTL values in the route request have reached a certain threshold, and still 
no RREP messages have been received, then the destination is assumed to be 
unreachable, and the messages queued for this destination are thrown out. 
 
Sequence Numbers 
 

Each destination (node) maintains a monotonically increasing sequence number, 
which serves as a logical time at that node.  Also, every route entry includes a destination 
sequence number, which indicates the “time” at the destination node when the route was 
created.  The protocol uses sequence numbers to ensure that nodes only update routes 
with “newer” ones.  Doing so, we also ensure loop-freedom for all routes to a destination. 

All RREQ messages include the originator’s sequence number, and its (latest 
known) destination sequence number.  Nodes receiving the RREQ add/update routes to 
the originator with the originator sequence number, assuming this new number is greater 
than that of any existing entry.  If the node receives an identical RREQ message via 
another path, the originator sequence numbers would be the same, so in this case, the 
node would pick the route with the smaller hop count. 

If a node receiving the RREQ message has a route to the desired destination, then 
we use sequence numbers to determine whether this route is “fresh enough” to use as a 
reply to the route request.  To do this, we check if this node’s destination sequence 
number is at least as great as the maximum destination sequence number of all nodes 
through which the RREQ message has passed.  If this is the case, then we can roughly 
guess that this route is not terribly out-of-date, and we send a RREP back to the 
originator. 
 As with RREQ messages, RREP messages also include destination sequence 
numbers.  This is so nodes along the route path can update their rout ing table entries with 
the latest destination sequence number. 
 



Link Monitoring & Route Maintenance 
 
 Each node keeps track of a precursor list, and an outgoing list.  A precursor list is 
a set of nodes that route through the given node.  The outgoing list is the set of next-hops 
that this node routes through.  In networks where all routes are bi-directional, these lists 
are essentially the same. 
 Each node periodically sends HELLO messages to its precursors.  A node decides 
to send a HELLO message to a given precursor only if no message has been sent to that 
precursor recently.  Correspondingly, each node expects to periodically receive messages 
(not limited to HELLO messages) from each of its outgoing nodes.  If a node has 
received no messages from some outgoing node for an extended period of time, then that 
node is presumed to be no longer reachable. 
 Whenever a node determines one of its next-hops to be unreachable, it removes 
all affected route entries, and generates a Route Error (RERR) message.  This RERR 
message contains a list of all destinations that have become unreachable as a result of the 
broken link.  The node sends the RERR to each of its precursors.  These precursors 
update their routing tables, and in turn forward the RERR to their precursors, and so on.  
To prevent RERR message loops, a node only forwards a RERR message if at least one 
route has been removed.   
 



The following flow chart summarizes the action of an AODV node when processing an 
incoming message.  HELLO messages are excluded from the diagram for brevity: 
 

 
 

Figure 2 



Performance Results - Scalability 
 
One of the goals in simulating AODV is to determine how well it scales.  How does the 
protocol performance vary with respect to the number of nodes in the network?   
 
Attempting to answer this question, I conducted experiments measuring message activity, 
varying the number of nodes.  I compute total message activity as the total number of 
AODV messages sent and received at each node.  It is important to count both sent and 
received messages, as they will generally differ, for not all sent messages are received, 
while some messages are received many times (broadcasts).  Additionally, I measured 
memory usage and elapsed time. 
 
Varying the number of nodes can be accomplished in two basic ways.  One is by varying 
field size, keeping node density constant.  Another is by keeping the field size constant 
and increasing the density.  I performed experiments using both these approaches. 
 
In all my simulated experiments, each node sent messages to random destinations at an 
average rate of one message per minute.  The nodes sent messages for ten minutes, and 
then statistics were recorded one minute afterwards. 
 
Increasing Density in a Fixed Field 
 
In this first experiment, I attempted to determine the effects of increasing the density of 
mobile nodes within a fixed area.  I varied the number of nodes, from 4 to 1024 nodes, 
within a fixed field (3000x3000 meters).  All message sending rates and durations were 
held constant.  Also, to minimize randomness, the nodes were arranged in a grid, with 
equal spacing between nodes.  
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Figure 3 

 
From Figure 3, we see that as the node density increases, the number of messages sent 
and received per node appears to increase quadratically.  This can be explained by the 



observation that when nodes broadcast RREQ messages, those messages are received by 
more nodes.  As more nodes come close together, each node receives a greater number of 
RREQ messages, thus performing an increased amount of work. 
 
Memory and Time Usage 
 
Memory and time are critical resources that can limit scalability.  In these experiments, I 
measure memory usage and elapsed time with respect to the number of nodes.  For 
consistency, the simulations I ran for these experiments were identical to the ones I ran 
for the above experiment.  Memory usage information was obtained from the Java Virtual 
Machine at the end of each simulation.  The experiments were performed on a mosix-
enabled cluster machine (Dell 1550) with dual 1.2 Ghz processors, 1 GB memory, using 
Java 2 v.1.4.2 on a RedHat 9 Linux kernel.  
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Figure 4.  Memory usage grows quadratically.  Best-fit curve: m=.0561n2+.593n+543.6. 
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Figure 5.  Elapsed time exhibits cubic growth. Best-fit curve: t=6.6×10-5n3–.0154n2+2.84n–99.2. 

 



In Figure 4, the best- fit curve was computed using quadratic regression.  The equation of 
the curve was 6.543593.0561. 2 ++= nnm , where m represents memory usage in 
megabytes, and n represents the number of nodes.  This regression curve gives us a 
model with which we can predict memory usage for any number of nodes.  The model 
suggests a O(n2) relationship between memory usage and nodes.  By this model, with one 
gigabyte of memory, we would expect to be able to run this simulation with about 4200 
nodes. 
 
While the Memory Usage plot in Figure 4 could be fit nicely with a quadratic regression 
curve, the Elapsed Time plot in Figure 5 was best-fit using cubic regression.  This model 
suggests an O(n3) relationship between running time and number of nodes.  Figure 5 
shows that running this particular simulation with 1000 nodes takes roughly 58,000 
seconds, or 16 hours.  By this model, running the same simulation with twice as many 
nodes would require over 131 hours, or 5½ days! 
  
Mobility effect in constant-density field 
 
In this experiment, I compared message activity per node with and without mobility, in a 
constant-density field.  Nodes were initially arranged in a grid format with each node 
separated by 625 meters, which is also the maximum range of the node radios.  Nodes 
moved according to the random walk mobility model.  Every minute, each node moved a 
random distance of up to 200 meters in a random direction. 
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Figure 6 

 
From Figure 6, we see that mobility causes an increase in message activity.  With 
mobility, destinations can become unreachable, causing route error messages to be sent 
and routes to be removed.  To create those routes again, new route requests need to be 
originated, resulting in the increased message activity. 
 
Figure 7 shows a breakdown of the different AODV messages in the above experiment, 
with mobility. 
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Figure 7 

 
Figure 7 illustrates that RREQ messages make up the majority of the messages passed 
throughout the AODV network.  Furthermore, the proportion of RREQ messages 
increases as the number of nodes increases.  The reason there are proportionally many 
more RREQ messages is because they are flooded through the network upon each route 
request.  In contrast, RREP, RERR, and HELLO messages are always sent to specific 
neighbors. 
 
In some sense, RREQ messages are the “bottleneck” of the protocol.  Reducing the 
number of RREQ messages would significantly improve the overall performance.  The 
expanding ring search mechanism does help, on average, by limiting the spread of RREQ 
broadcasts; yet, RREQ messages are still the main limiting factor of performance. 
 
 



Code Explanation 
 
Files 
 
The AODV code is part of the SWANS code base.  The following is a list of files within 
SWANS that relate to AODV: 
 
src/jist/swans/route/ 

RouteAodv.java  - the bulk of the AODV code 
RouteInterface.java - contains the AODV routing interface 

src/driver/ 
aodvsim.java - a simulation driver for running large-scale simulations 
aodvtest.java - a simple simulation with just a few nodes 

 
RouteAodv.java contains the bulk of the AODV code.  All of the code explanations 
in the following sections refer to this file. 
 
 State Variables and Data Structures: 
 
• seqNum (int) – The node’s sequence number.  This value is initialized to 

SEQUENCE_NUMBER_START and is incremented just before broadcasting a RREQ 
message.   

• routeTable (RouteTable) – The routing table object.  This structure stores 
route information in a HashMap, mapping NetAddress objects to 
RouteTableEntry objects.  It contains methods for route 
addition/lookup/removal.  It also contains methods for removing all routes though a 
given next hop, and for removing a list of route entries. 

o RouteTableEntry – This class represents the route information for some 
destination.  It includes: a next hop address (MacAddress), a destination 
sequence number, and a hop count. 

• messageQueue (MessageQueue) – This message queue stores messages that 
are waiting for routes.  The messages are stored in a LinkedList object.  The 
object has methods for sending queued messages, and removing messages (in case no 
route could be found). 

• rreqList (LinkedList) – This structure contains a list of pending route 
requests (of type RouteRequest) originated by the node.  Routes requests 
(represented as RouteRequest objects) are added to this list when the node 
initially requests a route.  Requests are removed either when a RREP message is 
received, or when the RREQ with the maximum allowable TTL (TTL_THRESHOLD) 
times out. 

• rreqBuffer (RreqBuffer) – The route request buffer object.  This structure 
has a LinkedList of RreqBufferEntry objects, which keep track of recently 
sent RREQ messages so they do not get resent.  It also contains methods for adding 
entries, and clearing expired entries.  Entries expire after 



RREQ_BUFFER_EXPIRE_TIME.  The clearExpireEntries() method gets 
called in the periodic timeout() event.  The buffer has a maximum size of 
MAX_RREQ_BUFFER_SIZE. 

o RreqBufferEntry – This class contains the RREQ ID and address of the 
node that originated the RREQ.  It also contains the time (simulation time) 
that the message was sent.   

• precursorSet (PrecursorSet) – This structure stores a list of the node’s 
precursors, along with information for each precursor.  This is stored as a HashMap, 
mapping the precursor’s MacAddress to a PrecursorInfo object.  The 
PrecursorInfo object contains the time that the message was last sent to the 
precursor.  PrecursorSet includes a method for sending RERR messages to all 
precursors. 

• outgoingSet (OutgoingSet) – This structure stores a list of outgoing nodes, 
along with a helloWaitCount for each outgoing node.  helloWaitCount 
keeps track of the number of HELLO_INTERVALs that have passed since the last 
message was received from the outgoing node.  If helloWaitCount exceeds a 
certain threshold specified by HELLO_ALLOWED_LOSS, then the outgoing node is 
considered unreachable. 

• rreqIdSeqNum (int) – The sequence number for RREQ ID’s.  When sending a 
RREQ message, it assigns rreqIdSeqNum to the message’s rreqId field, and 
then increments rreqIdSeqNum. 

 

Core Methods 
 
• send(NetMessage) – This method, called by the network entity, attempts to send 

a message over the network.  If routing information is available, it simply forwards 
the message to the appropriate next hop.  Otherwise, the message is saved in the 
messageQueue and a route request is originated. 

• receive(…) – This method, called by the network entity, processes incoming 
AODV messages.  It checks the type of the message object and passes the message to 
the appropriate method: 

o receiveRouteRequestMessage() – Processes an incoming RREQ 
message.  Updates routing tables, and then either sends a RREP message (by 
calling generateRouteReplyMessage(), or forwards the RREQ (by 
calling forwardRouteRequestMessage()). 

o receiveRouteReplyMessage() – Processes an incoming RREP 
message.  Updates routing tables and precursor and outgoing lists.  Then, if 
the node is the RREQ originator, it removes the pending route request, and 
sends the queued messages along the new route.  If the node is not the RREQ 
originator, it forwards the RREP to the next hop. 

o receiveRouteErrorMessage() – Processes an incoming RERR 
message.  Removes all affected routes.  If at least one route removed, it calls 
precursorSet.sendRERR() to forward the RERR to all precursors. 



o receiveHelloMessage() – Processes an incoming HELLO message.  
This does nothing.  (The peek() method takes care of the processing of 
HELLO messages). 

• peek() – This method is called by the network entity for every incoming packet 
(including non-AODV messages).  If the last-hop of the incoming packet is in the 
outgoing set, the helloWaitCount for that outgoing node is reset (indicating that 
the node is still reachable). 

• timeout() – This method is an event that gets called every AODV_TIMEOUT for 
the duration of a simulation.  It clears expired entries in the rreqBuffer and sends 
any HELLO messages that need to be sent.  Then it updates the helloWaitCount 
counters for each outgoing node.  If any of these helloWaitCount’s have 
surpassed the HELLO_ALLOWED_LOSS, then routes are removed, and route error 
messages are sent. 

• RREQtimeout() – This timeout event gets scheduled for a future time whenever 
the node originates a RREQ message.  When the timeout for a given route request 
occurs, if still no reply has been received (routeFound flag is false), then it sends 
another RREQ message with an increased TTL, and schedules another 
RREQtimeout().  This process continues until the routeFound flag has been set 
to true, or the TTL cannot be further increased (it is already at TTL_THRESHOLD). 

• sendIpMsg() – This method is used whenever a message needs to be sent over the 
network.  This method sends the message using netEntity.send() after a brief, 
random delay.  Additionally, if the next-hop node is a precursor, it renews the 
corresponding precursor entry with the current simulation time. 

 

AODV Message Classes 
 
There following four classes represent the different AODV messages.  Each implements 
the jist.swans.misc.Message interface. 

• RouteRequestMessage 
• RouteReplyMessage 
• RouteErrorMessage 
• HelloMessage 

 

Statistics 
 
stats (AodvStats) – The stats object maintains global statistical information 
for a simulation.  This object should be instantiated once by the simulation driver 
program, and each AODV node should contain a reference to this object.  The reference 
can be set using the setStats() method.   
 



Constants 
 
The following constants can be set within the AODV code.  Some of these can be used to 
tune AODV performance for different networks.  All time durations are in simulation 
time. 
 
• DEBUG_MODE (Boolean) – If true, debugging statements are printed.  Default is 

false. 
• HELLO_MESSAGES_ON (Boolean) – Activate/deactivate HELLO messages.  Should 

always be true, except possibly for debugging.  Default is true. 
• SEQUENCE_NUMBER_START (int) – Starting sequence number at each node.  

Default is 0. 
• RREQ_ID_SEQUENCE_NUMBER (int) – Starting RREQ ID sequence number.  

Default is 0. 
• RREQ_BUFFER_EXPIRE_TIME (long) – Maximum duration an entry may reside in 

the RREQ buffer before it may be removed.  Default is 5 seconds. 
• MAX_BUFFER_SIZE (int) – Strict maximum size of node’s RREQ buffer.  Default 

is 10. 
• AODV_TIMEOUT (int) – Period of time between calls to timeout() event. Default 

is 30 seconds. 
• HELLO_INTERVAL (long) – Duration of inactivity after which a HELLO message 

should be sent to precursor.  Default is 30 seconds. 
• HELLO_ALLOWED_LOSS (int) – Number of timeouts that must occur before 

determining an outgoing link unreachable.  Default is 2. 
• RREQ_TIMEOUT_BASE (long) – Constant term for RREQ timeout duration.  

Default is 1 second. 
• RREQ_TIME_PER_TTL (long) – Variable term for RREQ timeout duration, which 

depends on the TTL value of the RREQ message.  Defaut is 500 milliseconds (per 
TTL).   

• TRANSMISSION_JITTER (long) – The maximum delay before sending any packet. 
 
 
Running Simulations: 
 
The aodvsim driver program can be used to run large-scale AODV simulations.  Via 
options, the user can specify input variables such as the number of nodes, field 
dimensions, node arrangement, mobility model, packet loss, send rate, and node activity 
timing.  When the simulation is complete, the program outputs statistics of packet counts, 
memory usage, and elapsed time. 
 
For usage help, type ‘swans driver.aodvsim’ without any additional options.  
Figure 8 shows a sample execution. 
 



 
Figure 8. Sample execution for simulation with 25 nodes arranged in a 5x5 grid format in 
a 3000x3000m field.  After 10 seconds, nodes begin sending messages an average rate of 
1.0 message per minute, for 600 seconds; the simulation ends one minute after nodes stop 
sending messages.  There is no mobility or packet loss. 
 
The driver program aodvtest is an example of a simple AODV simulation, with just three 
nodes and a single message.  Throughout the development process, I used small 
simulations such as this to test correctness of the code.  When running these small 
simulations, it is often useful to set the RouteAodv.DEBUG_MODE flag to true to see 
how AODV is operating internally. 
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% swans driver.aodvsim -n 25 -a grid:5x5 -f 3000x3000 -t 10,600,60 -s 
1.0 -m static -l none 
------------- 
Packet stats: 
------------- 
Rreq packets sent = 1396 
Rreq packets recv = 4554 
Rrep packets sent = 318 
Rrep packets recv = 317 
Rerr packets sent = 0 
Rerr packets recv = 0 
Hello packets sent = 255 
Hello packets recv = 254 
Total aodv packets sent = 1969 
Total aodv packets recv = 5125 
Non-hello packets sent = 1714 
Non-hello packets recv = 4871 
-------------- 
Overall stats: 
-------------- 
Messages to deliver = 250 
Route requests      = 65 
Route replies       = 86 
Routes added        = 65 
 
freemem:  1493248 
maxmem:   839909376 
totalmem: 2031616 
used:     539112 
start time  : Wed Apr 14 18:32:04 EDT 2004 
end time    : Wed Apr 14 18:32:07 EDT 2004 
elapsed time: 3239 


