AODV Routing | mplementation for
Scalable Wireless Ad-Hoc Network Simulation (SWANS)

Clifton Lin
ca36@cornell.edu

Introduction

The Ad-Hoc On-demand Distance Vector (AODV) routing protocol [2] isone of several
published routing protocols for mobile ad- hoc networking. Wireless ad-hoc routing
protocols such as AODV are currently an area of much research among the networking
community. Thus, tools for simulating these protocols are very important.

For my project, | have implemented the AODV protocol as part of a scalable wireless ad
hoc network simulation(SWANS). SWANS is built upon a novel Java-based simulation
framework called JST [1].

Since one of the goalsis scalahility, | have strived to make the code as efficient as
possible. For example, | implemented an expanding ring search algorithm to limit the
flood of RREQ messages. | also attempted to keep memory utilization low by doing
things like capping buffer sizes, removing expired entries, and by reducing the number of
events. Finaly, | used efficient data structures, such as hash tables, to improve
performance.

The code is correct, to the best of my knowledge. Throughout the devel opment process, |
have used simulation programs which | have written to test and harden the code.

In the remainder of this report, | describe my protocol design, discuss performance
results, and give an overview of the code for future developers.

Protocol Design

My implementation of AODV is based on arecent draft of the AODV specification[2]. |
have |mpI emented all the essential functionality of AODV, including:

RREQ and RREP messages (for route discovery)

RERR messages, HELL O messages, and precursor lists (for route maintenance)

Sequence numbers

Hop counts

- Expanding ring search

Some functionality described in the specification has been omitted, such as Gratuitous
RREP messages, RREP acknowledgements, and multicast support, because they are
either not essentia to the algorithm, or inapplicable given our network model.

The Basic Protocol

Each AODV router is essentially a state machine that processes incoming requests from
the SWANS network entity. When the network entity needs to send a message to another
node, it calls upon AODV to determine the next- hop.

Whenever an AODV router receives arequest to send a message, it checks itsrouting
tableto seeif aroute exists. Eachrouting table entry consists of the following fields:

Destination address

Next hop address

Destination sequence number

Hop count
If aroute exists, the router smply forwards the message to the next hop. Otherwise, it
saves the message in a message queue, and then it initiates a route request to determine a
route. The following flow chart illustrates this process:

P rocess send
request

|z route
available™?

r‘r’es l:uj
Savemsgin
Forward Message queue; initiate

route request

A

End

Figurel

Upon receipt of the routing information, it updates its routing table and sends the queued
message(s).

AODV nodes use four types of messages to communicate among each other. Route
Request (RREQ) and Route Reply (RREP) messages are used for route discovery. Route
Error (RERR) messages and HELL O messages are used for route maintenance. The
following sections describe route determination and route maintenance in greater detail.

AODV Route Discovery

When a node needs to determine a route to a destination node, it floods the
network with a Route Request (RREQ) message. The originating node broadcasts a
RREQ message to its neighboring nodes, which broadcast the message to their neighbors,
and so on. To prevent cycles, each node remembers recently forwarded route requests in
aroute request buffer (see next section). As these requests spread through the network,
intermediate nodes store reverse routes back to the originating node. Since an
intermediate node could have many reverse routes, it always picks the route with the
smallest hop count.

When a node receiving the request either knows of a “fresh enough” route to the
destination (see section on sequence numbers), or is itself the destination, the node
generates a Route Reply (RREP) message, and sends this message along the reverse path
back towards the originating node. As the RREP message passes through intermediate
nodes, these nodes update their routing tables, so that in the future, messages can be
routed though these nodes to the destination.

Notice that it is possible for the RREQ originator to receive a RREP message
from more than one node. In this case, the RREQ originator will update its routing table
with the most “recent” routing information; that is, it uses the route with the greatest
destination sequence number. (See section on sequence numbers).

The Route Request Buffer

In the flooding protocol described above, when a node originates or forwards a
route request message to its neighbors, the node will likely receive the same route request
message back from its neighbors. To prevent nodes from resending the same RREQs
(causing infinite cycles), each node maintains a route request buffer, which contains alist
of recently broadcasted route requests. Before forwarding a RREQ message, a node
always checks the buffer to make sure it has not already forwarded the request.

RREQ messages are aso stored in the buffer by a node that originates a RREP
message. The purpose for this is so a node does not send multiple RREPs for duplicate
RREQs that may have arrived from different paths. The exception is if the node receives
a RREQ with a better route (i.e. smaller hop count), in which case anew RREP will be
sent.

Each entry in the route request buffer consists of a pair of values. the address of
the node that originated the request, and a route request identification number (RREQ id).
The RREQ id uniquely identifies a request originated by a given node. Therefore, the
pair uniquely identifies a request across all nodes in the network.

To prevent the route request buffers from growing indefinitely, each entry expires
after a certain period of time, and then isremoved. Furthermore, each node’ s buffer has a
maximum size. If nodes are to be added beyond this maximum, then the oldest entries
will be removed to make room.

Expanding Ring Search

The flooding protocol described above has a scalability problem, because
whenever a node requests a route, it sends a message that passes through potentially
every node in the network. When the network is small, thisis not a major concern.
However, when the network is large, this can be extremely wasteful, especidly if the
destination node is relatively close to the RREQ originator. Preferably, we would like to
set the TTL value on the RREQ message to be just large enough so that the message
reaches the destination, but no larger. However, it is difficult for a node to determine this
optimal TTL without prior globa knowledge of the network.

To solvethis problem, | have implemented an expanding ring search algorithm,
which works as follows. When a node initiates a route request, it first broadcasts the
RREQ message with asmall TTL vaue (say, 1). If the originating node does not receive
a RREP message within a certain period of time, it rebroadcasts the RREQ message with
alarger TTL vaue (and a'so a new RREQ identifier to distinguish the new request from
the old ones). The node continues to broadcast messages with increasing TTL and RREQ
ID values until it receives a route reply.

If the TTL values in the route request have reached a certain threshold, and till
no RREP messages have been received, then the destination is assumed to be
unreachable, and the messages queued for this destination are thrown out.

Sequence Numbers

Each destination (node) maintains a monotonically increasing sequence number,
which serves as alogical time at that node. Also, every route entry includes a destination
sequence number, which indicates the “time” at the destination node when the route was
created. The protocol uses sequence numbers to ensure that nodes only update routes
with “newer” ones. Doing so, we also ensure loop-freedom for al routes to a destination.

All RREQ messages include the originator’ s sequence number, and its (latest
known) destination sequence number. Nodes receiving the RREQ add/update routes to
the originator with the originator sequence number, assuming this new number is greater
than that of any existing entry. If the node receives an identical RREQ message via
another path, the originator sequence numbers would be the same, so in this case, the
node would pick the route with the smaller hop count.

If a node receiving the RREQ message has a route to the desired destination, then
we use sequence numbers to determine whether this route is “fresh enough” to use asa
reply to the route request. To do this, we check if this node' s destination sequence
number is at least as great as the maximum destination sequence number of al nodes
through which the RREQ message has passed. If thisis the case, then we can roughly
guess that this route is not terribly out-of-date, and we send a RREP back to the
originator.

As with RREQ messages, RREP messages also include destination sequence
numbers. This is so nodes along the route path can update their routing table entries with
the latest destination sequence number.

Link Monitoring & Route Maintenance

Each node keeps track of aprecursor list, and an outgoing list. A precursor list is
a set of nodes that route through the given node. The outgoing list is the set of next-hops
that this node routes through. In networks where al routes are bi-directional, these lists
are essentially the same.

Each node periodically sends HELL O messages to its precursors. A node decides
to send a HEL L O message to a given precursor only if no message has been sent to that
precursor recently. Correspondingly, each node expects to periodically receive messages
(not limited to HELL O messages) from each of its outgoing nodes. If a node has
received no messages from some outgoing node for an extended period of time, then that
node is presumed to be no longer reachable.

Whenever a node determines one of its next- hops to be unreachable, it removes
all affected route entries, and generates a Route Error (RERR) message. This RERR
message contains a list of all destinations that have become unreachable as a result of the
broken link. The node sends the RERR to each of its precursors. These precursors
update their routing tables, and in turn forward the RERR to their precursors, and so on.
To prevent RERR message loops, a node only forwards a RERR message if at least one
route has been removed.

The following flow chart summarizes the action of an AODV node when processing an
incoming message. HEL L O messages are excluded from the diagram for brevity:

A

y

RREQ m=s g

Frocess receive
awe it

RERE msg—F—

Update route to
ariginator [if better
than existing)

Ma

Has “fresh
nough” route’y,

E destination™

RREF m=g

|

Update route
table, precursar &
outgoing listE

k= ariginator?

Remove affectad
routes

Atleastone
removedy

“fes
v

Fanuward RREP ta
next hop

mesz Jges

Send queued

Famward RERFR ta
PrEcUrEars

—"res Na
A 1
If notin buffer,
Send RREF fonward R REQ to
nieighbars

End

Performance Results - Scalability

One of the goals in simulating AODV is to determine how well it scales. How doesthe
protocol performance vary with respect to the number of nodes in the network?

Attempting to answer this question | conducted experiments measuring message activity,
varying the number of nodes. | compute total message activity as the total number of
AODV messages sent and received at each node. It isimportant to count both sent and
received messages as they will generally differ, for not all sent messages are received,
while some messages are received many times (broadcasts). Additionally, | measured
memory usage and elapsed time.

Varying the number of nodes can be accomplished in two basic ways. Oneis by varying
field size, keeping node density constant. Another is by keeping the field size constant
and increasing the density. | performed experiments using both these approaches.

Inall my simulated experiments, each node sent messages to random destinations at an
average rate of one message per minute. The nodes sent messages for ten minutes, and
then statistics were recorded one minute afterwards.

Increasing Density in a Fixed Field

In this first experiment, | attempted to determine the effects of increasing the density of
mobile nodes within a fixed area. | varied the number of nodes, from 4 to 1024 nodes,
within a fixed field (3000x3000 meters). All message sending rates and durations were
held constant. Also, to minimize randomness, the nodes were arranged in a grid, with
equal spacing between nodes.

350000

[} >
T 300000 A
2
5 250000
o
> 200000
>
S 150000
< /
S, 100000
©
» /
¢ 50000
= _.....A—/
O L T T

0 200 400 600 800 1000
of Nodes, in 3000x3000m field

Figure3

From Figure 3, we see that as the node density increases, the number of messages sent
and received per node appears to increase quadratically. This can be explained by the

observation that when nodes broadcast RREQ messages, those messages are received by
more nodes. As more nodes come close together, each node receives a greater number of
RREQ messages, thus performing an increased amount of work.

Memory and Time Usage

Memory and time are critical resources that can limit scalability. In these experiments, |
measure memory usage and elapsed time with respect to the number of nodes. For
consistency, the simulations | ran for these experiments were identical to the ones | ran
for the above experiment. Memory usage information was obtained from the Java Virtua
Machine at the end of each simulation. The experiments were performed on a mosix-
enabled cluster machine (Dell 1550) with dual 1.2 Ghz processors, 1 GB memory, using
Java 2 v.1.4.2 on a RedHat 9 Linux kernel.

60

N

N
o

S
e
—

e

0 200 400 600 800 1000
of nodes, in 3000x3000m field

Memory Usage (MB)
N w
o o

=
o

o
!

Figure4. Memory usage grows quadratically. Best-fit curve: m=.0561n+.593n+543.6.

60000 b
50000 //
40000

30000 /
20000 /

10000 /

0 200 400 600 800 1000
of nodes, in 3000x3000m field

Elapsed Time (seconds)

Figure5. Elapsed time exhibits cubic growth. Best-fit curve: t=6.6" 10°n°~.0154n?+2.84n-99.2.

In Figure 4, the best-fit curve was computed using quadratic regression. The equation of

the curve was m =.0561n” +.593n +543.6 , where m represents memory usage in
megabytes, and n represents the number of nodes. This regression curve gives us a
model with which we can predict memory usage for any number of nodes. The model
suggests a O(n?) relationship between memory usage and nodes. By this model, with one
gigabyte of memory, we would expect to be able to run this smulation with about 4200
nodes.

While the Memory Usage plot in Figure 4 could be fit nicely with a quadratic regression
curve, the Elapsed Timeplot in Figure 5 was best-fit using cubic regression. This model
suggests an O(n°) relationship between running time and number of nodes. Figure 5
shows that running this particular simulation with 1000 nodes takes roughly 58,000
seconds, or 16 hours. By this model, running the same simulation with twice as many
nodes would require over 131 hours, or 5% days!

Mobility effect in constant-density field

In this experiment, | compared message activity per node with and without mobility, in a
congtant-density field. Nodes were initialy arranged in a grid format with each node
separated by 625 meters, which is also the maximum range of the node radios. Nodes
moved according to the random walk mobility model. Every minute, each node moved a
random distance of up to 200 meters in a random direction.

2500

[
K=}
o
Z 2000
B /
[oX
2 1500 -
2 / /./ *— Mobility
- e
2 1000 —®— No mobility
(0]
(@)
I
S 500
[
=

O i T T T T

0 20 40 60 80 100

of Nodes, in constant-density field

Figure6

From Figure 6, we see that mobility causes an increase in message activity. With
mobility, destinations can become unreachable, causing route error messages to be sent
and routes to be removed. To create those routes again, new route requests need to be
originated, resulting in the increased message activity.

Figure 7 shows a breakdown of the different AODV messages in the above experiment,
with mobility.

Breakdown of AODV Messages

0
100% i i - s

95% 1 |
90% . —
85% 1 — [OHELLO
80% 1 — |ORERR
75% 1 — RREP
70% — |ORREQ
65%] —
60% 1 —
55% T T T T . .
4 9 16 25 36 64 100
of Nodes

Percent of message activity

Figure7

Figure 7 illustrates that RREQ messages make up the mgjority of the messages passed
throughout the AODV network. Furthermore, the proportion of RREQ messages
increases as the number of nodes increases. The reason there are proportionally many
more RREQ messages is because they are flooded through the network upon each route
request. In contrast, RREP, RERR, and HEL L O messages are aways sent to specific
neighbors.

In some sense, RREQ messages are the “bottleneck” of the protocol. Reducing the
number of RREQ messages would significantly improve the overall performance. The
expanding ring search mechanism does help, on average, by limiting the spread of RREQ
broadcasts; yet, RREQ messages are till the main limiting factor of performance.

Code Explanation

Files

The AODV code is part of the SWANS code base. The following is alist of fileswithin
SWANS that relate to AODV:

src/jist/swans/route/
Rout eAodv. java - the bulk of the AODV code
Rout el nt erf ace. j ava - containsthe AODV routing interface
src/driver/
aodvsi mjava - asmulationdriver for running large-scale smulations
aodvtest.java -asmplesmulation with just afew nodes

Rout eAodv. j ava contains the bulk of the AODV code. All of the code explanations
in the following sections refer to this file.

State Variables and Data Structures:

seqNum (i nt) —Thenodessequence number. Thisvaueisinitialized to
SEQUENCE_NUMBER_START and is incremented just before broadcasting a RREQ
message.

rout eTabl e (Rout eTabl e) — Therouting table object. This structure stores
route information in aHashMap, mapping Net Addr ess objectsto

Rout eTabl eEnt ry objects. It contains methods for route
addition/lookup/removal. It also contains methods for removing al routes though a
given next hop, and for removing alist of route entries,

0 Rout eTabl eEnt ry — This class represents the route information for some
destination. It includes: a next hop address (Mac Addr ess), adestination
sequence number, and a hop count.

messageQueue (MessageQueue) — This message queue stores messages that
are waiting for routes. The messages are stored in aLi nkedLi st object. The
object has methods for sending queued messages, and removing messages (in case no
route could be found).

rreglLi st (LinkedLi st) —Thisstructure containsalist of pending route
requests (of type Rout eRequest) originated by the node. Routes requests
(represented as Rout eRequest objects) are added to this list when the node
initialy requests aroute. Requests are removed either when a RREP message is
received, or when the RREQ with the maximum allowable TTL (TTL_THRESHOLD)
times out.

rreqBuffer (RreqBuffer) —Therouterequest buffer object. This structure
hasali nkedLi st of Rr eqBuf f er Ent r y objects, which keep track of recently
sent RREQ messages so they do not get resent. It also contains methods for adding
entries, and clearing expired entries. Entries expire after

RREQ BUFFER _EXPI RE_TI ME. Thecl ear Expi reEnt ri es() method gets
caled in the periodict i meout () event. The buffer has a maximum size of
MAX_RREQ BUFFER SI ZE.

0 RreqBufferEntry —Thisclass containsthe RREQ ID and address of the
node that originated the RREQ. It also contains the time (simulation time)
that the message was sent.

precursor Set (Precursor Set) — Thisstructure stores alist of the node's
precursors, along with information for each precursor. Thisis stored asaHashMap,
mapping the precursor’s Mac Addr ess toaPr ecur sor | nf o object. The

Pr ecur sor | nf o object contains the time that the message was last sent to the
precursor. Precur sor Set includes a method for sending RERR messages to all
precursors.

out goi ngSet (Qut goi ngSet) — This structure stores alist of outgoing nodes,
aong withahel | oWai t Count for each outgoing node. hel | oWai t Count
keeps track of the number of HELLO | NTERVAL s that have passed since the last
message was received from the outgoing node. If hel | oWAi t Count exceedsa
certain threshold specified by HELLO ALLOWED L GSS, then the outgoing node is
considered unreachable.

rreql dSegNum (i nt) — The sequence number for RREQ ID’s. When sending a
RREQ message, it assignsr r eql dSegNumto the message'sr r eql d field, and
then incrementsr r eql dSeqNum

Core Methods

send(Net Message) — This method, called by the network entity, attempts to send
amessage over the network. If routing information is available, it smply forwards
the message to the appropriate next hop. Otherwise, the message is saved in the
messageQueue and aroute request is originated.

recei ve(..) —Thismethod, called by the network entity, processes incoming
AODV messages. It checks the type of the message object and passes the message to
the appropriate method:

0 recei veRout eRequest Message() — Processes an incoming RREQ
message. Updates routing tables, and then either sends a RREP message (by
caling gener at eRout eRepl yMessage() , or forwards the RREQ (by
calling f or war dRout eRequest Message()).

0 receiveRout eRepl yMessage() — Processes an incoming RREP
message. Updates routing tables and precursor and outgoing lists. Then, if
the node is the RREQ originator, it removes the pending route request, and
sends the queued messages along the new route. |f the node is not the RREQ
originator, it forwards the RREP to the next hop.

0 receiveRout eError Message() — Processes anincoming RERR
message. Removes all affected routes. If at least one route removed, it calls
precur sor Set . sendRERR() to forward the RERR to al precursors.

0 receiveHel |l oMessage() - Processesanincoming HELLO message.
This does nothing. (The peek() method takes care of the processing of
HELLO messages).

peek() — Thismethod is called by the network entity for every incoming packet
(including nonAODV messages). If the last-hop of the incoming packet isin the
outgoing set, thehel | oWai t Count for that outgoing node is reset (indicating that
the node is still reachable).

ti meout () — Thismethod is an event that gets called every ACDV_TI MEQUT for
the duration of asimulation. It clears expired entriesinther r eqBuf f er and sends
any HEL L O messages that need to be sent. Then it updates the hel | oWai t Count
counters for each outgoing node. If any of these hel | oWai t Count 'shave
surpassed the HELLO _ALLOWED L GSS, then routes are removed, and route error
messages are sert.

RREQX i meout () — Thistimeout event gets scheduled for a future time whenever
the node originates a RREQ message. When the timeout for a given route request
occurs, if gtill no reply has been received (r out eFound flag isfalse), then it sends
another RREQ message with an increased TTL, and schedules another

RREQ i meout () . Thisprocess continues until ther out eFound flag has been set
to true, or the TTL cannot be further increased (it isalready at TTL_ THRESHOLD).
sendl pMsg() — This method is used whenever a message needs to be sent over the
network. This method sends the message using net Enti ty. send() after abrief,
random delay. Additionally, if the next-hop node is a precursor, it renews the
corresponding precursor entry with the current ssmulation time.

AODV Message Classes

There following four classes represent the different AODV messages. Each implements
thej i st. swans. m sc. Message interface.

Rout eRequest Message

Rout eRepl yMessage

Rout eEr r or Message

Hel | oMessage

Statistics

stats (AodvStats) —Thest at s object maintains global statistical information
for asmulation. This object should be instantiated once by the smulation driver
program, and each AODV node should contain a reference to this object. The reference
can be set using theset St at s() method.

Constants

The following constants can be set within the AODV code. Some of these can be used to
tune AODV performance for different networks. All time durations are in simulation
time.

DEBUG_MODE (Boolean) — If true, debugging statements are printed. Default is
false.

HELLO MESSAGES ON (Boolean) — Activate/deactivate HELL O messages. Should
always be true, except possibly for debugging. Default istrue.
SEQUENCE_NUMBER_START (int) — Starting sequence number at each node.
Default is 0.

RREQ | D_SEQUENCE_NUMBER (int) — Starting RREQ ID sequence number.
Default is 0.

RREQ BUFFER_EXPI RE_TI ME (long) — Maximum duration an entry may residein
the RREQ buffer before it may be removed. Default is5 seconds.

MAX_BUFFER_SI ZE (int) — Strict maximum size of node’' s RREQ buffer. Default
is10.

ACDV_TI MEQUT (int) — Period of time between callstot i neout () event. Default
is 30 seconds.

HELLO | NTERVAL (long) — Duration of inactivity after which aHELLO message
should be sent to precursor. Default is 30 seconds.

HELLO ALLOWED LGSS (int) — Number of timeouts that must occur before
determining an outgoing link unreachable. Default is 2.

RREQ TI MEQUT _BASE (long) — Constant term for RREQ timeout duration.

Default is 1 second.

RREQ TI ME_PER_TTL (long) — Variable term for RREQ timeout duration, which
depends on the TTL value of the RREQ message. Defaut is 500 milliseconds (per
TTL).

TRANSM SSI ON_JI TTER (long) — The maximum delay before sending any packet.

Running Simulations:

The aodvsim driver program can be used to run large-scae AODV simulations. Via
options, the user can specify input variables such as the number of nodes, field
dimensions, node arrangement, mobility model, packet loss, send rate, and node activity
timing. When the simulation is complete, the program outputs statistics of packet counts,
memory usage, and elapsed time.

For usage help, type ‘swans dri ver. aodvsi m without any additional options.
Figure 8 shows a sample execution.

% swans driver.aodvsim-n 25 -a grid:5x5 -f 3000x3000 -t 10, 600,60 -s
1.0 -mstatic -1 none

Rreq packets sent = 1396
Rreq packets recv = 4554
Rrep packets sent = 318
Rrep packets recv = 317
Rerr packets sent = 0
Rerr packets recv = 0

Hel | o packets sent = 255
Hel | o packets recv = 254

Total aodv packets sent = 1969

Total aodv packets recv = 5125

Non- hel | o packets sent = 1714

Non- hel | o packets recv = 4871

Overal |l stats:

Messages to deliver = 250

Rout e requests = 65

Route replies = 86

Rout es added = 65

freemem 1493248

maxmem 839909376

total mrem 2031616

used: 539112

start tinme : Wed Apr 14 18:32:04 EDT 2004
end tinme . Wed Apr 14 18:32:07 EDT 2004

el apsed tinme: 3239

Figure 8. Sample execution for ssimulation with 25 nodes arranged in a 5x5 grid format in
a 3000x3000m field. After 10 seconds, nodes begin sending messages an average rate of
1.0 message per minute, for 600 seconds; the simulation ends one minute after nodes stop
sending messages. There is no mobility or packet |oss.

The driver program aodvtest isan example of asimple AODV simulation with just three
nodes and a single message. Throughout the development process, | used small
simulations such as thisto test correctness of the code. When running these small
simulations, it is often useful to set the Rout eAodv. DEBUG_MODE flagtot r ue to see
how AODV is operating internally.

References:

[1] R. Barr. iST—Javain Simulation Time: User Guide and Tutorial. Sept. 2003.

[2] C. Perkins, E. Belding-Royer, S. Das. Ad hoc On-Demand Distance Vector (AODV)
Routing. Feb. 2003. http://ww. i etf.org/internet-drafts/draft -
i etf-manet-aodv-13.txt.

