JiST Graphical User Interface Event Viewer

Mark Fong
mjf21@cornell.edu

Table of Contents

JST Graphical User Interface EVENt VIBWEYcooveieeeeceee e 1
LI o (SN O] 1= | £ 2
1100 (U7 o) 1R 3
LVA L= L A (6= 3
191 o | o PSR 3
a0 L= R 3

RN = 5
(@011 (0] 1= O 7
Parent and Children COlUMNS..........oooo i ar e 7
PaUSE/RESUME BULLON.......cceviieiccieiee ettt et e st e e s e e e s s s bae e e s snbaeeeeaans 7
SIS oI = U110 o TP RTRRPPRI 7

(O L1 = 011 (o 7
(00010 (ST R SV T=. 7
1SS 7
DAA SITUCLUIMNES.........ooiiciittieeie et e e e e e e e e e s e s s bbb a e e e e e e e s s e sanbbaseeeeeeesesansbaberereeenas 8
Data Structure: EVENTNOGE.c.vviiii ittt e et e s e e s aa e e 8

L AV AV 1] 0= £ 8

S = (oY = AT o= 8
Classes and COore MEINOUS.........c.oicviiii e e e s s e e s senareeeeanns 8
(C10 1 oo O TSR U TP 8

R LRI o 1= Y oo [9

VS (O 1R 110 (< (= FO U 10

(O oT1 o (= 1@ 1 o [o g 10
MOUSEAEPLErHBNAIEN ... e 10

(11T =S U 10

(Y0 [0 = (0| 1= O 10
TeSting aNd VErITICAIIONc.oiuiiirieeiieeeeee et ne s 11
(000 ¢ 011 015\ EURTRPP 11
S 0107210 TR 11
USING T8 COUR ...ttt bbbt e e e 11
Running Simulations: Seeing it iN ACHON.........coiiirieieereree e 11
[T T o 81V I o P 12
JISEMINISIMNEIO .. e e e 12
Incorporating the Code into EXiSting ProjJECES.ccooveiiinine s 12

SugQEStions fOr IMPrOVEMENLcoiiieeiieceee et r e 12

Introduction

Javain Simulation Time, or JiST, is a simulation framework written in pure Java that
transparently and efficiently enables programmers to simulate many different types of
computer scenarios.

One of the key constructsin JST isan event. An event is an occurrence that causes other
events, which causes more events, and so on and so forth. While a simulation is running,
a programmer would like to view the results of the events that took place. JiST provides
the option of writing the simulation resultsto log files. These log files can be extremely
verbose, forcing the reader to sort through many lines of text.

For atypical event X, the programmer would like to see two types of relationships that X
possesses: the event that spawned or called X, and the events that X calls. We will
designate these events the Parent and Children, respectively. Children events can have
children as well, giving the event-causality picture a one-to- many tree structure, with
each node having one parent and zero or more children.

The goal of this project isto create a Java-based graphical user interface (GUI) that
allows the programmer to easily view which events cause which events. The GUI isan
intuitive method whereby the user can easily traverse from event to event while skipping
undesired content.

What it does

The application transforms the existing simulation logs into a hierarchy of events. While
using atable to display the events, the application enables the user to traverse events (via
mouse clicks) in causal order while listing the events in temporal order.

Design
Following Sun’s Model-View-Controller (MVC) architecture for creating GUISs,
designing this project involved three main steps:
1) Modd - creating amodel that logically represented the data, i.e. events.
2) View - creating the GUI components and the view of the data.
3) Controller - managing user interaction with the GUI.

Model

The model that describes the data to be displayed in the GUI involves events and their
relationships. Events already exist within JiST, but the concept of parent and children
events had to be included. An EventNode encapsulates the construct formed by an event
and the relationships it has with its parent and children events. An EventNode consists of
the event itself, the event’s parent, and the event’s children. EventNodes strung together
form a one-to- many tree structure, as shown in Figure 1 below.

The data model describes EventNodes in the context of atable. WhenJiST creates an
Event, it notifies the data model of the new Event and its parent. The model creates a list
of EventNodes that will be displayed in the table. The model specifies functions for
finding the Parent and Children events with respect to the list.

View

The View portion of the MV C architecture involves creating the GUI components and
determining how the data will be presented to users. There are two components, a button
and atable. Aseach event is created during a ssmulation, the table displaysthe JST
event’s properties. As can be seen from the screenshot below, the table has atotal of
seven columns. Thefirst five display the events' properties of time, type, method,
object, and continuation. The last two columns display information regarding the parent
and children events.

The parent and children columns display the time property of the parent and children
events. Since events can have more than one child, the children column contains a drop-
down list that allows users to select which child is of interest to them. Users can make
selections on these individual children entries (as well as the cell-contents of the parent
column), but the details of how this works is deferred to the Controller section.

There are three buttors, all of which are separate from the table. The leftmost one allows
users to pause the ssmulation so that they can leisurely view the table. The middle one
allows one Event to be added to the GUI. The rightmost button allows users to specify an
amount of time to allow Events to be added before pausing the GUI.

Below is a screenshot of the paused GUI after the Until button is initially pressed.

4 EUNT [pubdic siatie wok JE it guikig Suile g.maln.. nall
public siatis woid (s ran e guikig Suile g malrg.. el

pubic rishie weid (e rari e, guilag Guils g maing.

public rirhie weid i rarina guilag Guilsg

pubiio Aatie wobd jkd nandinia, guikig Suilo g maing.. il

EuHT |public satis wold jedrantme guikag suilog malngd. . nall

Controller

As mentioned before, the Controller portion of the MV C architecture describes how the
program manages interaction with the user. The user is able to interact with five portions
of the GUI:

1) The parent column in the table.
2) The children column in the table.
3) The Pause/Resume button.

4) The Step button.

5) The Until button.

Parent and Children Columns

Since the parent and children column only display the time property of these events, the
user will want to see the expanded details. Since the parent and children are events
themselves, they have their own complete entries in the table. Thus, when users click on
the parent column, the Controller redirects the user to the row of the table that contains
the parent event. Similarly, when users select an entry (i.e. child) in the drop-down list in
the children column, the Controller redirects the user to the row of the table containing
the selected child event. For short, this action of redirection within the table is called
Parent and Children jumping.

Pause/Resume Button

The pause/resume button toggles between pausing and resuming the Controller. Each
time the button is pressed, it changes to the opposite state. The pause button’ s function is
to suspend changes to the table so that the user can view the state of the table at an
arbitrary time. When the pause button is pressed, the Controller blocks and prevents
events from being added to the data model. Pressing the resume button removes the
block and recommences addition of events.

Step Button

Similar to stepping through a code debugger, this button alows the user to step through a
simulation one event at atime. The Step button is available while the GUI is paused.
Each time the Step button is pressed, the Controller un-pauses/resumes the GUI by
turning event-blocking off, and allows one event to be added to the data model. After the
event is added, the Controller pauses the GUI again and blocks events from being added.

Until Button

This button allows the user to specify an amount of time to run asimulation. The Until
button is available when the GUI is paused. When the button is pressed, the user is
prompted to enter an amount of time. The Controller then un-pauses/resumes the GUI,
walits the specified amount of time, and then pauses the GUI again.

Code Review

Files

There are two source files, GuiLog.java and Loglnterface.java which are
located in jist \runtime\guilog. GuiLog.java contains the entire program

and Loglinterface.java contains the methods that the main JiST engine
calls.

Data Structures

Data structure: EventNode

In order to capture the relationship among events, a data structure was used called an
EventNode that wraps around each Event and accomplishes the one-to- many tree
structure. An EventNode contains three objects:

1) The Event itself.
2) An EventNode representing the Event’ s parent.
3) A list of EventNodes, each of which represents the Event’s children.

This data structure allows one to traverse the event tree from one event to another.

Of particular interest are the parent and children events. The relationship among an
event, its parent, and its children form an nway tree. That is, each node of the tree has
exactly one node above it, and can have any number of nodes below it.

Private Members

The following are instance members of class GuiLog
- frame (JFrame) — The JFrame for the GUI.
panel (JPanel) — The JPand for the GUI.
table (JTable) - The JTable that displays the Event information.
model (EventTableModel) — The JTable' s EventTableModd.
list (LinkedList) — A list used to track the events internally so that they can easily
be deleted.
numEventsThreshHold(int) - The maximum number of Events that can be
displayed.
pauseButton(JButton) — The Pause/Resume button for the GUI.
stepButton(JButton) — The Step button for the GUI.
untilButton(JButton) — The Until button for the GUI.

Static Variables

The following are static variables used for pausing the Controller.
pauselock (Object)— Object that acquires the lock.
paused (Boolean)— Pause-status of the Controller.
isStep (Boolean) - Whether to Step through one event or not.

Classes and Core Methods
All of the classes are contained within GuiLog.java.

GuiLog
The constructor of the GuiLog class creates and displays the table (JTable) and button
(JButton). It creates a JFrame and adds a JPanel to it. It then configures various objects

such as the MouseAdapterHandler, ButtonHandler, and customized versions of the
TableModel, TableCellRenderer, and TableCellEditor, whichare all associated with the
JTable and described in greater detail below.

GuiL og also contains methods for pausing the Controller. Toggling the status of the
Pause/Resume button componert calls these methods.

M ethods

add(Event id, Event parent) — Adds Event id to the EventTableM odel and
specifies parent asthe parent event. Thisalso adds id to the LinkedList list.
Before adding id, this method also checks if numEventsThreshHold has been
reached.

Before this occurs, the method first calls checkLock() to determineiif it can
proceed execution

del (Event id) — Deletes Event id from the EventTableModel and removes it
from the LinkedList list.

checklLock() - This method attempts to acquire a lock on pauselLock. If
paused isfase, the lock is acquired and the method returns. If paused istrue,
the lock is not acquired and the method waitsto be notified by resume(). If
isStep istrue, this method returns only once.

pause () — This method setspaused to true. This method is called by the
ButtonHandler.

resume () — This method sets paused to false and releases the lock on the
pauselock object by notifying the checkLock() method. This method is
called by the ButtonHandler.

stepEvent() — This method sets paused to fase, isStep to true, and releases
the lock on the pauselock object by notifying the checkLock() method.
Since isStep is true, checkLock() will only return once, and thus the net effect
of this method is that one Event is alowed to be added. This method is called by
the ButtonHandler.

untilTimer() — This method, caled by the ButtonHandler, prompts the user for a
number of seconds. It then createstwo pairs of Timers and Until Tasks: one pair
for caling GuiLog.Resume(), and the other pair, which is scheduled to run after
the user-specified number of seconds, for calling Guil og.Pause().

EventTableM odel

As described in the MV C architecture, the table obtains its data from a data model. The
EventTableModel class represents the data model for the JTable. The EventTableM odel
implements the TableModel interface. It usesan array of EventNodes to store and access
the Events. It has methods for managing the EventNodes, e.g. finding EventNodes in the
array, finding Parent and Childrenindices in the array.

Methods

add(Event ev, Event parent) — Creates anew EventNode with ev asthe
Event, and parent asthe parent Event. This new EventNode is then added to the
array. Finally, this method notifies al listeners that the rows in the table have
changed.

del (Event id) — Deletes Event id and its children from the array. Finally, this
method notifies all listeners that the rows in the table have changed.

EventCellRenderer
The EventCellRenderer is a customized TableCellRenderer. This object describes what

information to display and in what format.
Methods

getTableCellRendererComponent (JTable table, Object value,
boolean isSelected, boolean hasFocus, int row, int column) —This
method returns a component that is used for drawing the cell in the fable. Based
on the column number, the method extracts the appropriate Event information
from the value object and returns either a JLabel for basic Event information, or
a JButton for the Parent Event. The JButton displays the time that the Parent
Event occurred, and an arrow indicating where the Parent Event is located on the
table.

ChildrenCellEditor

The ChildrenCellEditor is a customized TableCellEditor. This object describes what

information to display in the Children Event column and in what format. It also describes

how to handle mouse events.
getTableCellEditorComponent (JTable table, Object value,
boolean isSelected, int row, int column) — This method returns a
JComboBox component that is used for editing cells in the Children Event
column. Thetimes that each Child Event occursis extracted from the value
object and entered into the JComboBox. This method aso registers the
JComboBox as an ActionListener.
actionPerformed(ActionEvent e) — This method runs when a mouse
selection occurs on the JComboBox. When a Child Event is selected from the
JComboBox, this method identifies the table row that corresponds to the selected
Child. The method then changes the view of the JTable to show the selected
Child Event.

MouseAdapter Handler

Thisis a customized version of MouseAdapter. The purpose of this classisto handle

mouse clicks on the Parent Event column.
mouseClicked(MouseEvent e) — This method is similar to the
ChildrenCéllEditor’s actionPerformed() method. When acell in the Parent
Evert column is clicked on, the method identifies the table row that corresponds
to the Event’s Parent. The method then changes the view of the JTable to show
the selected Parent Event.

UntilTask
Thisis acustomized version of TimerTask. The constructor (which takesin a String)

determines whether the Until Task’srun () method will call GuiLog's pause() or
resume () method. Thisclassisused by GuiLog's untilTimer() method.

ButtonHandler
This class defines what action to take when one of the buttons is pressed.

actionPerformed(ActionEvent e) — If the Pause/Resume button is pressed,
this method toggles the GuiLog's static variable, paused, between true and
false by calling GuiLog's pause() and resume () methods.

If the Step button is pressed, this method calls GuiLog's stepEvent () method.
If the Until button is pressed, this method calls GuiLog's untilTimer() method.

Testing and Verification
Both correctness and performance were tested and evaluated by different test programs.

Correctness

The following functionality criteria were tested:

1. For an Event with zero, one, or two or more Children, the Event, Parent, and
Childreninformation must be displayed correctly, and the Parent and Children
jumping must function correctly.

2. Thetable must continue to function properly when the number of viewable Events
is varied.

3. Thetable must continue to function properly while the Pause button is enabled.

4. The table must continue to function properly when the Step button is pressed.

5. The table must continue to function properly when the Until button is pressed.

To test #1, Events were created and added to the GUI with zero, one, or two or more
children. The Event, Parent, and Children information for each of these was inspected.
The Parent and Children jumping was al so tested.

For #2, values from arange of 15 to 50 were used, and for each value the criteriain #1
wastested. The testing for #3-5 was incorporated into these tests as well by clicking the
Pause, Step, and Until buttons intermittently and verifying the criteria in #1.

Performance

Performance was evaluated on a qualitative basis. Test programs were used to evaluate
the program’s ability to handle different workloads.

In earlier stages of development, rendering of the GUI was quite sluggish. To improve
upon this, static variables were used to replace components and properties that were
constantly being instantiated or set, such as fonts, icons, and buttons. This improved the
rendering performance dramatically. Throughout the correctness tests, performance was
monitored to ensure that the rendering speed was maintained and did not decline during
the testing process.

Using the Code

Running Simulations: Seeing it in Action
To see the GuiLog work, one can run the same simulations that were used for testing.
The following are step-by-step instructions for windows. The home directory of the CVS

J ST repository is /code. Before running each example, the user must perform the
following:

I. Put dl thefilesin the /code/libs directory into the CLASSPATH variable.
I1. From acommand prompt, negotiate to the source directory of the JiST repository:
/code/src.
[11. Compile the entire project by typing: make.bat

GuiLog.Main
1. Type the following from the source directory: java jist.runtime.guilog.GuiLog

Jist.minisim.hello
1. In/src/jist/fruntime/Main.java, change the GUILOG_SIZE variable to a
positive number.
2. Repeat step 1.
3. Type the following from the source directory:
javajist.runtime.Main -c debug-controller.properties jist. minissim.hello

Incorporating the Code into Existing Projects

To use the Event Viewer, one has to import jist.runtime.guilog.GuiLog. There are two
methods available to the user: add() and del(), which alows the user to add or delete an
event from the GUI, respectively. These methods were described earlier in the GuiL og
Code Review sectionon page 9.

Suggestions for Improvement

Sincethe JST GUI Event Viewer is a debugging tool, there are more ways to improve
and augment its debugging capabilities. Some of these include:
1. Consolidating results of Parent and Children event information so that the user
can view all the relatives of a specified event simultaneoudly.
2. Pausing JST simulations and allowing the user to step through and into Events,
much like atraditional debugger does with code.
3. Add aprogress indicator to illustrate how much time has passed when the Until
buttonis used.

