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SUMMARY

Discrete event simulators are important scientific tools and their efficient design and

execution is the subject of much research. In this paper, we propose a new approach for

constructing simulators that leverages virtual machines and combines advantages from

the traditional systems-based and language-based simulator designs. We introduce JiST,

a Java-based simulation system that executes discrete event simulations both efficiently

and transparently by embedding simulation semantics directly into the Java execution

model. The system provides standard benefits that the modern Java runtime affords. In

addition, JiST is efficient, out-performing existing highly optimized simulation runtimes.

As a case study, we illustrate the practicality of the JiST framework by applying it to

the construction of SWANS, a scalable wireless ad hoc network simulator. We simulate

million node wireless networks, which represents two orders of magnitude increase in

scale over what existing simulators can achieve on equivalent hardware and at the same

level of detail.
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1 Introduction

From physics to biology, from weather forecasting to predicting the performance of a new

processor design, researchers in many avenues of science increasingly depend on software

simulations to model various realistic phenomena or hypothetical scenarios that often cannot

be satisfactorily expressed analytically nor easily reproduced and observed empirically. Instead,

simulation models are derived and then encoded as discrete event-driven programs: events are

time-stamped messages processed in their temporal order as the simulator progresses through

simulated time; event processing involves updating the simulation program state according to

the given model and possibly scheduling more events in the future. In this paper, we propose

a new approach for constructing discrete-event simulators that leverages a modern virtual

machine to achieve performance.

1.1 Background

Due to their popularity and widespread utility, discrete event simulators have been the

subject of much research (surveyed in [2, 3, 4, 5]). Systems researchers have built many types

of simulation kernels and libraries, while the languages community has designed numerous

languages specifically for simulation.

Simulation kernels, including systems such as the seminal TimeWarp OS [6], transparently

create a convenient simulation time abstraction. By mimicking the system call interface of

a conventional operating system, one can run simulations comprised of standard, unmodified

programs. However, since the kernel controls process scheduling, inter-process communication

and the system clock, the kernel can run its applications in simulation time. For example, an

application sleep request can be performed without delay, provided that the causal ordering of

messages among communicating processes is preserved. Moreover, the kernel may transparently

support concurrent execution of simulation applications and even speculative and distributed

execution. The process boundary provides much flexibility.

Unfortunately, the process boundary is also a source of inefficiency [7]. Simulation libraries,

such as Compose [8] and others, trade away the transparency afforded by process-level isolation

in favor of increased efficiency. For example, by combining the individual processes, one can

eliminate the process context-switching and marshalling overheads required for event dispatch

and thus increase simulation efficiency. However, various simulation functions that existed
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AN EFFICIENT APPROACH TO SIMULATION USING VIRTUAL MACHINES 3

within the kernel, such as message passing and scheduling, must then be explicitly programmed

in user-space. In essence, the simulation kernel and its applications are merged into a single

monolithic process that contains both the simulation model as well as its own execution engine.

This monolithic simulation program is more complex and littered with simulation library calls

and callbacks. The library may also require certain coding practices and program structure that

are not explicitly enforced by the compiler. This level of detail not only encumbers efforts to

transparently parallelize or distribute the simulator, it also impedes possible high-level compiler

optimizations and obscures simulation correctness. More advanced simulation kernels support a

similar hybrid design through the introduction of simulation time threading, sacrificing process

isolation and transparency for performance.

Finally, general-purpose simulation languages, such as Simula [9], Parsec [10] and many

others, are designed to simplify simulation development and to explicitly enforce the

correctness of monolithic simulation programs. Simulation languages often introduce execution

semantics that transparently allow for parallel and speculative execution, without any program

modification. Such languages often also introduce handy constructs, such as messages and

entities, that can be used to partition the application state. Constraints on simulation state and

on event causality are statically enforced by the compiler, and they also permit important static

and dynamic optimizations. An interesting recent example of a language-based simulation

optimization is that of reducing the overhead of speculative simulation execution through the

use of reverse computations [11]. However, despite these advantages, even general-purpose

simulation languages are domain-specific by definition and therefore suffer from specialization

relative to general-purpose computing languages, such as C, Java, Scheme, ML, etc. While they

offer handy simulation-oriented features, they usually lack modern language features, such as

type safety, reflection, dynamic compilation, garbage collection, and portability. They also lag

in terms of general-purpose optimizations and implementation efficiency. These deficiencies

only serve to perpetuate the small user-base problem, but perhaps the most significant barrier

to adoption by the broader community is that existing programs need to be rewritten in order

to be simulated. A similar argument (see section 3.2) applies also to high-level, domain-specific

simulation languages, such as TeD for telecommunications, which enable rapid prototyping,

modeling and simulator configuration for particular simulation domains.
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kernel library language JiST

transparent ++ ++ ++
efficient + + ++
standard ++ ++ ++

Table 1. Trade-offs inherent to different approaches of constructing simulations.

In summary, each of these three fundamental approaches to simulation construction – kernel,

library, and language – trades off a different desirable property, as shown in Table 1, where:

• standard means writing simulations in a conventional, popular programming language,

as opposed to a domain-specific language designed explicitly for simulation;

• efficient denotes optimizing the simulation program statically and dynamically by

considering simulation state and event causality constraints in addition to general-

purpose optimizations; creating a simulation engine that compares favorably with

existing, highly optimized systems both in terms of simulation throughput and memory

consumption, and; possibly distributing the simulation and executing it in parallel or

speculatively to improve performance;

• and transparent implies the separation of efficiency from correctness; that correct

simulation programs can be automatically transformed to run efficiently without the

insertion of simulation-specific library calls or other program modifications. Correctness

is an assumed pre-condition that simulation programs must compute valid and useful

results, regardless of how they are constructed.

1.2 Virtual machine-based simulation

Despite a plethora of ideas and contributions to theory, languages and systems, the simulation

research community has repeatedly asked itself “will the field survive?” under a perception

that it had “failed to make a significant impact on the general simulation community” (see

[12, 13, 10] and others). We were thus hesitant to build a new simulation system. In designing

our system, we decided from the outset:

• not to invent a simulation language, since new languages, and especially domain-specific

ones, are rarely adopted by the broader community;

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–7

Prepared using speauth.cls



AN EFFICIENT APPROACH TO SIMULATION USING VIRTUAL MACHINES 5

• not to create a simulation library, since libraries often require developers to clutter their

code with simulation-specific library calls and impose unnatural program structure to

achieve performance; and

• not to develop a new system kernel or language runtime for simulation, since custom

kernels or language runtimes are rarely as optimized, reliable, featured or portable as

their generic counterparts.

Instead, we propose a new approach to building simulators: to bring simulation semantics

to a modern and popular virtual machine-based language. JiST, which stands for Java in

Simulation Time, is a new discrete event simulation system built along these principles,

integrating the prior systems and languages approaches. Specifically, the key motivation behind

JiST is to create a simulation system that can execute discrete event simulations efficiently,

yet achieve this transparently within a standard language and its runtime.

These three attributes – the last one in particular – highlight an important distinction

between JiST and previous simulation systems in that the simulation code that runs on JiST

need not be written in a domain-specific language invented specifically for writing simulations,

nor need it be littered with special-purpose system calls and call-backs to support runtime

simulation functionality. Instead, JiST transparently introduces simulation time execution

semantics to simulation programs written in plain Java and they are executed over an

unmodified Java virtual machine. In other words, JiST converts a virtual machine into a

simulation system that is flexible and surprisingly efficient. Virtual machine-based simulation

provides the transparency of the kernel-based approach with the performance of a library-based

approach, using language-based techniques, but within a standard language and its runtime.

It is important to note from the outset that, in this paper, we focus on maximizing sequential

simulation performance through our new approach to simulator construction. Others, in

projects such as PDNS [14], SWAN-DaSSF [15], WiPPET-TeD [16] and SWiMNet [17], have

investigated algorithms and techniques to achieve scalability through distributed, concurrent,

and even speculative simulation execution. These techniques can sometimes provide around

an order of magnitude improvement in scale, but may require multi-processor hardware or

fast inter-connects to reduce synchronization costs. More importantly, such techniques are

orthogonal to the ideas of this paper. A truly scalable simulation system requires raw sequential

performance as well as effective distribution and parallelism.
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6 R. BARR, Z. J. HAAS, AND R. VAN RENESSE

The paper makes two primary contributions. The first contribution is the explanation and

validation of a new approach to simulator construction. We describe the basic idea in section 2

and elaborate on various extensions to the model in sections 3 and 6. Our second contribution

is the design and implementation of a scalable wireless network simulator based along these

principles, described in section 4. We evaluate our simulation system as well as the wireless

network simulator in section 5. Section 7 contains a discussion of some design decisions and

directions for future work. The related work is presented in section 8.

2 System overview and design

We begin by explaining how JiST converts a virtual machine into a simulation platform. In

this section, we outline the basic system architecture and explain what it means to execute

a program in simulation time. We then describe how JiST supports the simulation time

abstraction through extensions to the basic Java object model and its execution semantics.

Finally, we enumerate the more important functions of the JiST system call interface and

provide a short, illustrative simulation program example.

2.1 Architecture

The JiST system consists of four distinct components: a compiler, a language runtime or

virtual machine, a rewriter and a language-based simulation time kernel. Figure 1 presents the

JiST architecture: a simulation is first compiled, then dynamically rewritten as it is loaded,

and finally executed by the virtual machine with support from the language-based simulation

time kernel.

A primary goal of JiST is to execute simulations using only a standard language and runtime.

Consequently, the compiler and runtime components of the JiST system can be any standard

Java compiler and virtual machine, respectively. Simulation time execution semantics are

introduced by the two remaining system components: the rewriter and simulation time kernel.

The rewriter component of JiST is a dynamic class loader. It intercepts all class load requests

and subsequently verifies and modifies the requested classes. These modified, rewritten classes

now incorporate the embedded simulation time operations, but they otherwise completely

preserve the existing program logic. The program transformations occur once, at load time,

and do not incur rewriting overhead during execution. The rewriter also does not require
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Figure 1. The JiST system architecture – simulations are (1) compiled, then (2) dynamically
instrumented by the rewriter and finally (3) executed. The compiler and virtual machine are standard
Java language components. Simulation time semantics are introduced by the rewriter and are

supported at runtime by the simulation time kernel.

source-code access, since this is a byte-code to byte-code transformation.

At runtime, the modified simulation classes interact with the JiST simulation time kernel

through the various injected or modified operations. The JiST kernel is written entirely in Java,

and it is responsible for all the runtime aspects of the simulation time abstraction. For example,

it keeps track of simulation time, performs scheduling, and ensures proper synchronization.

2.2 Simulation time execution

The JiST rewriter modifies Java-based applications and runs them in simulation time, a

deviation from the standard Java virtual machine (JVM) byte-code execution semantics [18].

Under the standard Java execution model, which we refer to as actual time execution, the

passing of time is not explicitly linked to the progress of the application. In other words, the

system clock advances regardless of how many byte-code instructions are processed. Also, the

program can advance at a variable rate, since it depends not only on processor speed, but

also on other unpredictable things, such as interrupts and application inputs. Moreover, the

JVM does not make strong guarantees regarding timely program progress. It may decide, for

example, to perform garbage collection at any point.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–7

Prepared using speauth.cls



8 R. BARR, Z. J. HAAS, AND R. VAN RENESSE

actual time - program progress and time are independent
real time - program progress depends on time

simulation time - time depends on program progress

Table 2. The relationship between program progress and time under different execution models

Under simulation time execution, we make the progress of time dependent on the progress

of the application. The application clock, which represents simulation time, does not advance

to the next discrete time point until all processing for the current simulation time has been

completed. One could contrast this with real time execution, wherein the runtime guarantees

that instructions or sets of instructions will meet given deadlines. In this case, the rate of

application progress is made dependent on the passing of time. We summarize the different

execution models in Table 2.

The notion of simulation time itself is not new: simulation program writers have long been

accustomed to explicitly tracking the simulation time and explicitly scheduling simulation

events in time-ordered queues [19]. The simulation time concept is also integral to a number

of simulation languages and simulation class libraries. The novelty of the JiST system is

that it embeds simulation time semantics into the standard Java language, which allows

the system to transparently run the resulting simulations efficiently. Under simulation time

execution, individual application byte-code instructions are processed sequentially, following

the standard Java control flow semantics. However, the simulation time will remain unchanged.

Application code can only advance simulation time via the sleep(n) system call. In essence,

every instruction takes zero simulation time to process except for sleep, which advances the

simulation clock forward by exactly n simulated time quanta, or ticks. In other words, the

sleep function advances time under simulation time execution, just as it does under actual

time execution. The primary difference is that, under simulation time execution, all the other

program instructions do not have the side-effect of allowing time to pass as they are processed.

Thus, JiST is not intended to simulate the execution of arbitrary Java programs. Rather,

JiST is a simulation framework that can transparently and efficiently execute simulation

programs over the Java platform. JiST processes applications in their simulation-temporal

order, until all queued events are exhausted or until a pre-determined ending time is reached,
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AN EFFICIENT APPROACH TO SIMULATION USING VIRTUAL MACHINES 9

whichever comes first. This simulation program could be modeling anything from a wireless

network to a peer-to-peer application to a new processor design. The structure of such

simulation programs is described next.

2.3 Object model and execution semantics

JiST simulation programs are written in Java [20], an object-oriented language. Thus, the

entire simulation program comprises numerous classes that collectively implement its logic

and the state of the program is contained within objects during its execution. Interactions

among object are represented syntactically as method invocations.

JiST extends this traditional programming model with the notion of simulation entities,

defined syntactically as instances of classes that implement the empty Entity interface.

Every simulation object must be logically contained within an entity, where we define object

containment within an entity in terms of its reachability: the state of an entity is the combined

state of all objects reachable from it. Thus, although entities are regular objects within the

virtual machine at runtime, they serve to logically encapsulate application objects, as shown

in Figure 2(a). Entities are components of a simulation and represent the granularity at which

the JiST kernel manages a running simulation.

Each entity has its own simulation time and may progress through simulation time

independently. Thus, an entity cannot share its state with any other entity, otherwise there

could be an inconsistency in the state of the simulation. In other words, each (mutable) object

of the simulation must be contained within exactly one entity. Since Java is a safe language,

this constraint is sufficient to partition the simulation into a set of non-overlapping entities

and also prevents unmediated communication across entity boundaries.

All instructions and operations within an entity follow the regular Java control flow and

semantics. They are entirely opaque to the JiST infrastructure. Specifically, object method

invocations remain unchanged. The vast majority of the entity code is involved with encoding

the logic of the simulation model and is entirely unrelated to the notion of simulation time.

All the standard Java class libraries are available and behave as expected. In addition, the

simulation developer has access to a few JiST system calls.

In contrast, invocations on entities correspond to simulation events. The execution semantics

are that method invocations on entities are non-blocking. They are merely queued at their point

of invocation. The invocation is actually performed on the callee (or target) entity only when it
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Figure 2. (a) Simulation programs are partitioned into entities along object boundaries. Thus, entities
do not share any application state and can independently progress through simulation time between
interactions. (b) At runtime, entity references are transparently replaced with separators, which both

preserves the separation of entity state and serves as a convenient point to insert functionality.

reaches the same simulation time as the calling (or source) entity. In other words, cross-entity

method invocations act as synchronization points in simulation time. Or, from a language-

oriented perspective, an entity method is like a coroutine, albeit scheduled in simulation time.

This is a convenient abstraction in that it eliminates the need for an explicit simulation event

queue. It is the JiST kernel that actually runs the event loop, which processes the simulation

events. The kernel invokes the appropriate method for each event dequeued in its simulation

time order and executes the event to completion without continuation.

However, in order to invoke a method on another entity – to send it an event – the calling

entity must hold some kind of reference to the target entity, as depicted in Figure 2(b). We,

therefore, distinguish between object references and entity references. All references to a given

(mutable) object must originate from within the same entity. References to entities are free to

originate from any entity, including from objects within any entity. The rationale is that object

references imply inclusion within the state of an entity, whereas entity references represent

channels along which simulation events are transmitted. As a consequence, entities do not

nest, just as regular Java objects do not.

We reintroduce the separation of entities at runtime by transparently replacing all entity

references within the simulation byte-code with special objects, called separators. The separator
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AN EFFICIENT APPROACH TO SIMULATION USING VIRTUAL MACHINES 11

object identifies a particular target entity, but without referencing it directly. Rather,

separators store a unique entity identifier that is generated by the kernel for each simulation

entity during its initialization. Separators can be held in local variables, stored in fields or

objects or passed as parameters to methods, just like the regular object references that they

replace. Since replacement occurs across the entire simulation byte-code, it remains type-safe.

Due to this imposed separation, we guarantee that interactions among entities can only

occur via the JiST kernel. This is similar in spirit to the JKernel design [21] in that it provides

language-based protection and zero-copy inter-entity communication. However, JKernel is

designed to provide traditional system services, such as process-level protection, within a safe-

language environment, whereas JiST is designed explicitly for simulation. For example, whereas

JKernel utilizes native Java threads for concurrency, JiST introduces entities. Entities provide

thread-free event-based simulation time concurrency, which facilitates scalable simulation.

The separators, in effect, represent an application state-time boundary around each entity,

similar to a TimeWarp [6] process, but at a finer granularity. Separators are a convenient point

to insert additional simulation functionality. For example, by tracking the simulation time of

each individual entity, these separators allow for concurrent execution. Or, by adding the ability

to checkpoint entities, the system can support speculative execution as well. Finally, separators

also provide a convenient point for the distribution of entities across multiple machines. In a

distributed simulation, the separators function as remote stubs and transparently maintain a

convenient abstraction of a single system image. Separators can transparently store and track

the location of entities as they migrate among machines in response to fluctuating processor,

memory, and network loads.

The role of the simulation developer, then, is to write the simulation model in regular Java

and to partition the program into multiple entities along reasonable application boundaries.

This is akin to partitioning the application into separate classes. The JiST infrastructure will

transparently execute the program efficiently, while retaining the simulation time semantics.

This model of execution, known as the concurrent object model, is similar to, for example, the

Compose [8] simulation library. It invokes a method for every message received and executes it

to completion. This is in contrast to the process model that is used, for example, in the Parsec

language [10], wherein explicit send and receive operations are interspersed in the code. In

the process model, each entity must store a program-counter and a stack as part of its state.
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JistAPI.java
1 package jist.runtime;

2 class JistAPI {

3 interface Entity { }

4 long getTime();

5 void sleep(long ticks);

6 void end();

7 void endAt(long time);

8 void run(int type, String name, String[] args, Object props);

9 void runAt(Runnable r, long time);

10 void setSimUnits(long ticks, String name);

11 interface Timeless { }

12 interface Proxiable { }

13 Object proxy(Object proxyTarget, Class proxyInterface);

14 class Continuation extends Error { }

15 Channel createChannel();

16 interface CustomRewriter { JavaClass process(JavaClass jcl); }

17 void installRewrite(CustomRewriter rewrite);

18 interface Logger { void log(String s); }

19 void setLog(JistAPI.Logger logger);

20 void log(String s);

21 Entity THIS;

22 EntityRef ref(Entity e);

23 }

Figure 3. The partial JiST system call interface shown above is exposed at the language level via the
JistAPI class. The rewriter replaces these with their runtime implementations.

Unlike Compose, message sending in JiST is embedded in the language and does not require

a simulation library. Unlike Parsec, JiST embeds itself within the Java language and does not

require new language constructs. With the introduction of continuations in section 6.2, we will

even allow these two simulation models to co-exist.

2.4 Simulation kernel interface

JiST simulations run atop the simulation kernel and interact with it via a small API. The entire

API is exposed at the language level via the JistAPI class listed partially in Figure 3 and

explained below. The remainder of the API will be explained as the corresponding concepts

are introduced.

The Entity interface tags a simulation object as an entity, which means that invocations

on this object follow simulation time semantics: method invocations become events that are

queued for delivery at the simulation time of the caller. The getTime call returns the current
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AN EFFICIENT APPROACH TO SIMULATION USING VIRTUAL MACHINES 13

hello.java
1 import jist.runtime.JistAPI;

2 class hello implements JistAPI.Entity {

3 public static void main(String[] args) {

4 System.out.print("start simulation");

5 hello h = new hello();

6 h.myEvent();

7 }

8 public void myEvent() {

9 JistAPI.sleep(1);

10 myEvent();

11 System.out.print(" hello world, t="+JistAPI.getTime());

12 }

13 }

Figure 4. The simplest of simulations consists of one entity that emits a message at each time step.

simulation time of the calling entity, which is the time of the current event being processed plus

any additional sleep time. The sleep call advances the simulation time of the calling entity.

The endAt call specifies when the simulation should end. The THIS self-referencing entity

reference is analogous to the Java this object self-reference. It refers to the entity for which

an event is currently being processed and is rarely needed. The ref call returns a separator

stub of a given entity. All statically detectable entity references are automatically converted

into separator stubs by the rewriter. It is included only to deal with rare instances when entity

types might be created dynamically and for completeness.

These basic simulation primitives allow us to write simulators. The simplest such program,

that still uses simulation time semantics, is a counterpart of the obligatory “hello world”

program. It is a simulation with only a single entity that emits one message at every simulation

time-step, as listed in Figure 4.∗ This simplest of simulations highlights some important points.

To begin, the hello class is an entity, since it implements the Entity interface (line 2). Entities

can be created (line 5) and their methods invoked (lines 6 and 10) just as any regular Java

object. The entity method invocation, however, happens in simulation time. This is most

apparent on line 10, which is a seemingly infinite recursive call. In fact, if this program is run

under a regular Java virtual machine (i.e., without JiST rewriting) then the program would

∗Many other, longer examples may be found online [1].
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14 R. BARR, Z. J. HAAS, AND R. VAN RENESSE

abort with a stack overflow at this point. However, under JiST, the semantics is to schedule the

invocation via the simulation time kernel and thus the call becomes non-blocking. Therefore,

the myEvent method, when run under JiST semantics, will advance simulation time by one

time step (line 9), then schedule a new event at that future time, and finally print a hello

message with the entity simulation time (line 11). Instead of a stack overflow, the program

runs in constant stack space and the output is:

simulation start hello world, t=1 hello world, t=2 hello world, t=3 etc.

3 Optimizations

Having introduced the fundamental simulation time transformation, we now discuss

two performance-related extensions to the model: timeless objects and reflection-based

configuration. These additions are orthogonal to the simulation program. We annotate the

underlying simulation code, if at all necessary, and then perform high-level optimizations and

cross-cutting transformations with the rewriter, akin to aspect-oriented programming [22].

Other such extensions to the model, which are designed specifically to simplify simulation

development, are deferred to section 6.

3.1 Zero-copy semantics

Our first extension is the notion of timeless objects. A timeless object is defined as one that

will not change over time. Knowing that a value is temporally stable allows the system to

safely pass it across entities by reference, rather than by copy. The system may be able to

statically infer that an object is transitively open-world immutable [23] and automatically add

the timeless labels. However, any static analysis will be overly conservative at times. Thus, one

can explicitly request zero-copy semantics by using the Timeless interface to tag an object,

which implies that the tagged object will not be modified at any time after references to it

escape an entity boundary. Thus, the addition of a single tag, or the automatic detection

of the timeless property, affects all the events within the simulation that contain objects of

this type. The explicit tagging facility should be exercised with care, since individual entities

may progress at different rates through simulation time, and this can result in a temporal

inconsistency within the simulation state.
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Figure 5. Objects passed across entities should be timeless – in other words, should hold temporally
stable values – to prevent temporal inconsistencies in the simulation state. Sharing timeless objects
among entities is an effective way to conserve simulation memory and using zero-copy semantics

improves simulation throughput.

The timeless tag is also useful for sharing state among entities to reduce simulation memory

consumption, as depicted in Figure 5. For example, network packets are defined to be timeless

in SWANS, our wireless network simulator, in order to prevent unnecessary duplication:

broadcasted network packets are therefore not copied for every recipient, nor are they copied

in the various sender retransmit buffers. Similarly, one can safely share object replicas across

different instances of a simulated peer-to-peer application.

3.2 Reflection-based configuration

An important consideration in the design of simulators is configurability: the desire to reuse

the simulator for many different experiments. However, this can adversely affect performance.

Configuration is usually supported either at the source-code level, via configuration files, or

with scripting languages.

Source-level configuration entails the recompilation of the simulation program before

each run with hard-coded simulation parameters and linkage with a small driver program

for simulation initialization. This approach to configuration is flexible and runs efficiently,

because the compiler can perform constant propagation and other important optimizations

on the generic simulation code to produce a specialized and efficient executable. However, it

requires recompilation on each run. The use of configuration files eliminates the need for

recompilation. The configuration is read and parsed by a generic driver program as it initializes

the simulation. This option is not only brittle and limited to pre-defined configuration options,
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Figure 6. JiST can easily provide multiple scripting interfaces to configure its simulations without
source modification, memory overhead, or loss of performance. (1) As before, the simulation classes
are loaded and rewritten on demand. (2) The script engine configures the simulation using reflection
and may even dynamically compile the script byte-code for performance. (3) The simulation then runs

as before, interacting with the kernel as necessary.

it eliminates opportunities for static compiler optimizations. The script-based configuration

approach is championed by ns2 [19], a popular network simulator. A scripting language

interpreter – Tcl, in the case of ns2 – is backed by the compiled simulation runtime, so that

script variables are linked to simulation values, and a script can then be used to instantiate and

initialize the various pre-defined simulation components. Unfortunately, the linkage between

the compiled simulation components and the configuration scripts can be difficult to establish.

In ns2, it is achieved manually via a programming pattern called split objects, which requires a

language binding that channels information in objects within the compiled space to and from

objects in the interpreted space. This not only clutters the core simulation code, but it is also

inefficient, because it duplicates information. Furthermore, script performance depends heavily

on this binding. The choice of combining C with Tcl in ns2, for example, imposes excessive

string manipulation and leads to long configuration times. More importantly, this approach

eliminates static optimization opportunities, which hurts performance. It also results in the

loss of both static and dynamic type information across the compiled-interpreted interface,

thereby increasing the potential for error.
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In contrast, JiST-based simulations enjoy both the flexibility of script-based configuration

and the performance advantages of source-level configuration. The scripting functionality

comes “for free” in JiST. It does not require any additional code in the simulation components,

nor any additional memory. And, the script can configure a simulation just as quickly as a

custom driver program. This is because Java is a dynamic language that supports reflection.

As illustrated in Figure 6, the access that the script engine has to the simulation state is just as

efficient and expressive as the compiled driver program. A script engine can query and update

simulation values by reflection for purposes of tracing, logging, and debugging, and it can also

dynamically pre-compile the driver script directly to byte-code for efficient execution. The

simulation byte-code itself is compiled and optimized dynamically, as the simulation executes.

Thus, simulation configuration values are available to the Java optimizer and allow it to

generate more efficient and specialized code. The information available to the optimizer at

runtime is a super-set of what is available to a static simulation compiler. Finally, while the

scripting language environment may support a more relaxed type system, the type-safety of

the underlying simulation components is still guaranteed by the virtual machine, facilitating

earlier detection of scripting errors.

The script functionality is exposed via the JistAPI, so that simulators may also embed

domain-specific configuration languages. JiST supports the BeanShell engine, with its Java

syntax, and also the Jython engine, which interprets Python scripts. Java-based engines for

other languages, including Smalltalk, Tcl, Ruby, Scheme and JavaScript, also exist and can be

integrated. Likewise, high-level, domain-specific simulation languages, such as TeD, and also

graphical tools can be used to simplify the task of modeling and simulator configuration. Thus,

specialization is possible without loss of performance.

4 Case study: SWANS - Wireless network simulation

Wireless networking research is fundamentally dependent upon simulation. Analytically

quantifying the performance and complex behavior of even simple protocols on a large scale

is often imprecise. On the other hand, performing actual experiments is onerous: acquiring

hundreds of devices, managing their software and configuration, controlling a distributed

experiment and aggregating the data, possibly moving the devices around, finding the physical

space for such an experiment, isolating it from interference and generally ensuring ceteris
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Figure 7. The SWANS simulator consists of event-driven components that can be configured and
composed to form a meaningful wireless network simulation. Different classes of components are shown
in a typical arrangement together with specific instances of component implementations in italics.

paribus, are but some of the difficulties that make empirical endeavors daunting. Consequently,

the majority of publications in this area are based entirely upon simulation. Other related and

applicable areas of recent research interest include overlay networks [24] and peer-to-peer

applications [25, 26, 27, 28].

At a minimum, we would like to simulate networks of many thousands of nodes. However,

even though a few parallel discrete event simulation environments have been shown to scale

to networks of beyond 104 nodes, slow sequential network simulators remain the norm [29].

In particular, most published ad hoc network results are based on simulations of few nodes

only (usually fewer than 500 nodes), for a short duration, and over a small geographical area.

Larger simulations usually compromise on simulation detail. For example, they may simulate

only at the packet level without considering the effects of signal interference. Others reduce the

complexity of the simulation by curtailing the simulation duration, reducing the node density,

or restricting mobility. Our goal in this work is to improve the state of the art in this regard.

Therefore, as a proof of the JiST approach as well as a research tool, we constructed SWANS,

a Scalable Wireless Ad hoc Network Simulator, atop the JiST platform. The SWANS software

is organized as independent software components that can be composed to form complete
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wireless simulations, as shown in Figure 7. Its capabilities are similar to ns2 [19] and GloMoSim

[30], two popular wireless network simulators. There are components that implement different

types of applications; networking, routing and media access protocols; radio transmission,

reception and noise models; signal propagation and fading models; and node mobility models.

Instances of each component type are shown italicized in the figure. Nothing within the design

of JiST is specific to the simulation of wireless networks; SWANS is merely an exemplary

application.

Notably, the development of SWANS has been relatively painless. Since JiST inter-entity

message creation and delivery is implicit, as well as message garbage collection and typing,

the code is compact and intuitive. Components in JiST consume less than half of the code (in

uncommented line counts) of comparable components in GloMoSim, which are already smaller

than their counterpart implementations in ns2.

4.1 Design highlights

Every SWANS component is encapsulated as a JiST entity: it stores it own local state

and interacts with other components via exposed event-based interfaces. SWANS contains

components for constructing a node stack, as well components for a variety of mobility

models and field configurations. This pattern simplifies simulation development by reducing

the problem to creating relatively small, event-driven components. It also explicitly partitions

the simulation state and the degree of inter-dependence between components, unlike the

design of ns2 and GloMoSim. It also allows components to be readily interchanged with

suitable alternate implementations of the common interfaces and for each simulated node to

be independently configured. Finally, it also confines the simulation communication pattern.

For example, Application or Routing components of different nodes cannot communicate

directly. They can only pass messages along their own node stacks.

Consequently, the elements of the simulated node stack above the Radio layer become

trivially parallelizable, and may be distributed with low synchronization cost. In contrast,

different Radios do contend (in simulation time) over the shared Field entity and raise

the synchronization cost of a concurrent simulation execution. To reduce this contention

in a distributed simulation, the simulated field may be partitioned into non-overlapping,

cooperating Field entities along a grid.
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It is important to note that, in JiST, communication among entities is very efficient. The

design incurs no serialization, copy, or context-switching cost among co-located entities, since

the Java objects contained within events are passed along by reference via the simulation

time kernel. Simulated network packets are actually a chain of nested objects that mimic the

chain of packet headers added by the network stack. Moreover, since the packets are timeless

by design, a single broadcasted packet can be safely shared among all the receiving nodes

and the very same object sent by an Application entity on one node will be received at the

Application entity of another node. Similarly, if we use TCP in our node stack, then the same

object will be referenced in the sending node’s TCP retransmit buffer. This design conserves

memory, which in turn allows for the simulation of larger network models.

Dynamically created objects such as packets can traverse many different control paths

within the simulator and can have highly variable lifetimes. The accounting for when to

free unused packets is handled entirely by the garbage collector. This not only simplifies the

memory management protocol, but also eliminates a common source of memory leaks that can

accumulate over long simulation runs.

The partitioning of node functionality into individual, fine-grained entities provides an

additional degree of flexibility for distributed simulations. The entities can be vertically

aggregated, as in GloMoSim, which allows communication along a network stack within a

node to occur more efficiently. However, the entities can also be horizontally aggregated to

allow communication across nodes to occur more efficiently. In JiST, this reconfiguration can

happen without any change to the entities themselves. The distribution of entities across

physical hosts running the simulation can be changed dynamically in response to simulation

communication patterns and it does not need to be homogeneous.

4.2 Embedding Java-based network applications

SWANS has a unique and important advantage over existing network simulators. It can run

regular, unmodified Java network applications over the simulated network, thus allowing for

the inclusion of existing Java-based software, such as web servers, peer-to-peer applications

and application-level multicast protocols. These applications do not merely send packets to

the simulator from other processes. They operate in simulation time within the same JiST

process space, allowing far greater scalability. As another example, one could perform a similar

transformation on Java-based database engines or file-system applications to generate accesses
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within an disk simulator.

We achieve this integration via a special AppJava application entity designed to be a harness

for Java applications. This harness inserts an additional rewriting phase into the JiST kernel,

which substitutes SWANS socket implementations for any Java counterparts that occur within

the application. These SWANS sockets have identical semantics, but send packets through the

simulated network. Specifically, the input and output methods are still blocking operations (see

section 6.2). To support these blocking semantics, JiST automatically modifies the necessary

application code into continuation-passing style, which allows the application to operate within

the event-oriented simulation time environment.

4.3 Efficient signal propagation using hierarchical binning

Modeling signal propagation within the wireless network is strictly an application-level issue,

unrelated to JiST performance. However, doing so efficiently is essential for scalable wireless

simulation. When a simulated radio entity transmits a signal, the SWANS Field entity must

deliver that signal to all radios that could be affected, after considering fading, gain, and

pathloss. Some small subset of the radios on the field will be within reception range and a

few more radios will be affected by the interference above some sensitivity threshold. The

remaining majority of the radios will not be tangibly affected by the transmission.

ns2 and GloMoSim implement a näıve signal propagation algorithm, which uses a slow,

O(n), linear search through all the radios to determine the node set within the reception

neighborhood of the transmitter. This clearly does not scale as the number of radios increases.

ns2 has recently been improved with a grid-based algorithm [31]. We have implemented both

of these in SWANS. In addition, we have a new, more efficient algorithm that uses hierarchical

binning. The spatial partitioning imposed by each of these data structures is depicted in

Figure 8.

In the grid-based or flat binning approach, the field is sub-divided into a grid of node bins. A

node location update requires constant time, since the bins divide the field in a regular manner.

The neighborhood search is then performed by scanning all bins within a given distance from

the signal source. While this operation is also of constant time, given a sufficiently fine grid,

the constant is sensitive to the chosen bin size: bin sizes that are too large will capture too

many nodes and thus not serve their search-pruning purpose; bin sizes that are too small will

require the scanning of many empty bins, especially at lower node densities. A reasonable bin
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Figure 8. Efficient signal propagation is critical for wireless network simulation performance.
Hierarchical binning of radios allows location updates to be performed in expected amortized constant

time and the set of receiving radios to be computed in time proportional to its size.

size is one that captures a small number of nodes per bin. Thus, the bin size is a function

of the local radio density and the signal propagation radius. However, these parameters may

change in different parts of the field, from radio to radio, and even as a function of time, for

example, as in the case of power-controlled transmissions.

We improve on the flat binning approach. Instead of a flat sub-division, the hierarchical

binning implementation recursively divides the field along both the x and y-axes. The node

bins are the leaves of this balanced, spatial decomposition tree, which is of height equal to

the number of divisions, or log4( field size
bin size ). The structure is similar to a quad-tree, except

that the division points are not the nodes themselves, but rather fixed coordinates. Note

that the height of the tree changes only logarithmically with changes in the bin or field size.

Furthermore, since nodes move only a short distance between updates, the expected amortized

height of the common parent of the two affected node bins is O(1). This, of course, is under the

assumption of a reasonable node mobility model that keeps the nodes uniformly distributed.

Thus, the amortized cost of updating a node location is constant, including the maintenance

of inner node counts. When scanning for node neighbors, empty bins can be pruned as we

descend spatially. Thus, the set of receiving radios can be computed in time proportional to

the number of receiving radios. Since, at a minimum, we will need to simulate delivery of

the signal at each simulated radio, the algorithm is asymptotically as efficient as scanning a

cached result, as proposed in [17], even assuming perfect caching. But, the memory overhead

of hierarchical binning is minimal. Asymptotically, it amounts to limn→∞
∑log4n

i=1
n
4i = n

3 .
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The memory overhead for function caching is also O(n), but with a much larger constant.

Furthermore, unlike the cases of flat binning or function caching, the memory accesses for

hierarchical binning are tree structured and thus exhibit better locality.

5 Evaluation

Having explained the fundamental elements of the JiST and SWANS designs, we now turn

to performance evaluation. Conventional wisdom regarding language performance [32] argues

against implementing our system in Java. In fact, the vast majority of existing simulation

systems have been written in C and C++, or their derivatives. Nevertheless, we show

in this section that JiST and SWANS perform surprisingly well: aggressive profile-driven

optimizations combined with the latest Java runtimes result in a high-performance simulation

system. We compare SWANS with the two most popular ad hoc network simulators: ns2 and

GloMoSim. We selected these because they are widely used, freely available sequential network

simulators designed in the systems-based and language-based approaches, respectively.

The ns2 network simulator [19] has a long history with the networking community, is widely

trusted, and has been extended to support mobility and wireless networking protocols. It

is designed as a monolithic, sequential simulator, constructed using the simulation library

approach. ns2 uses a clever “split object” design, which allows Tcl-based script configuration

of C-based object implementations. Researchers have also extended ns2 to conservatively

parallelize its event loop [14]. However, this technique has proved primarily beneficial for

distributing ns2’s considerable memory requirements. Based on numerous published results, it

is not easy to scale ns2 beyond a few hundred simulated nodes. Simulation researchers have

shown ns2 to scale, with difficulty and substantial hardware resources, to simulations of a few

thousand nodes [29].

GloMoSim [30] is a newer simulator written in Parsec [10], a highly-optimized C-like

simulation language. GloMoSim has recently gained popularity within the wireless ad hoc

networking community, since it was designed specifically for scalable network simulation. For

example, to overcome Parsec’s large per-entity memory requirements, GloMoSim implements

a technique called “node aggregation” to conserve memory, by combining the state of multiple

simulated network nodes into a single Parsec entity. Parallel GloMoSim has been shown to

scale to 10,000 nodes on multi-processor machines. The sequential version of GloMoSim is
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freely available and the conservatively parallel version is commercialized as QualNet [33].

In this section, we present macro-benchmark results running full SWANS simulations. We

then show micro-benchmark results that highlight the throughput and memory advantages

of JiST. Unless otherwise noted, the following measurements were taken on a 2.0 GHz Intel

Pentium 4 single-processor machine with 512 MB of RAM and 512 KB of L2 cache, running

the version 2.4.20 stock Redhat 9 Linux kernel with glibc v2.3. We used the publicly available

versions of Java 2 JDK (v1.4.2), Parsec (v1.1.1), GloMoSim (v2.03) and ns2 (v2.26). Each data

point presented represents an average of at least five runs for the shorter time measurements.

All tests were also performed on a second machine – a more powerful and memory rich dual-

processor – giving identical absolute memory results and relative results for throughput (i.e.

scaled with respect to processor speed).

5.1 Macro-benchmarks

In the following experiment, we benchmarked JiST running a full SWANS ad hoc wireless

network simulation. We measured the performance of simulating an ad hoc network of nodes

running a UDP-based beaconing node discovery protocol (NDP) application. Node discovery

protocols are an integral component of many ad hoc network protocols and applications [34, 35].

Also, this experiment is representative both in terms of code coverage and network traffic: it

utilizes the entire network stack and transmits over every link in the network every few seconds.

However, the experiment is still simple enough that we have high confidence of simulating

exactly the same operations across the different platforms – SWANS, GloMoSim and ns2, –

which permits comparison and is difficult to achieve with more complex protocols. Finally, we

were also able to validate the simulation results against analytical estimates.

We constructed the following identical scenario in each of the simulation platforms. The

application at each node maintains a local neighbor table and beacons every 2 to 5 seconds,

chosen from a uniform random distribution. Each wireless node is placed randomly in the

network coverage area and moves with random-waypoint mobility [35] at speeds of 2 to

10 meters per second selected at random and with pause times of 30 seconds. Mobility in ns2

was turned off, because the pre-computed trajectories resulted in excessively long configuration

times and memory consumption. Each node is equipped with a standard radio configured with

typical 802.11b signal strength parameters. The simulator accounts for free-space path loss

with ground reflection and Rayleigh fading. We ran simulations with widely varying numbers
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Figure 9. SWANS significantly outperforms both ns2 and GloMoSim in simulations of the node
discovery protocol.
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Figure 10. SWANS can simulate larger network models due to its more efficient use of memory.
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Figure 11. (a) SWANS scales to networks of 106 wireless nodes. The figure shows the time for a
sequential simulation of a node discovery protocol in a wireless ad hoc network running on a commodity
machine. (b) Time and space consumed for a simulation of a more complex network protocol, the Zone

Routing Protocol.

of nodes, keeping the node density constant, such that each node transmission is received, on

average, by 4 to 5 nodes and interferes with approximately 35 others. Above each radio, we

constructed a stack of 802.11b MAC, IPv4 network, UDP transport, and NDP application

entities.

We ran this network model for 15 simulated minutes and measured overall memory and

time required for the simulation. For memory, we included the base process memory, the

memory overhead for simulation entities, and all the simulation data at the beginning of the

simulation. For time, we included the simulation setup time, the event processing overheads,

and the application processing time.

The throughput results are plotted both on log-log and linear scales in Figure 9. As expected,

the simulation times are quadratic functions of n, the number of nodes, when using the

näıve signal propagation algorithm. Even without node mobility, ns2 is highly inefficient.

SWANS outperforms GloMoSim by a factor of 2. SWANS-hier uses the improved hierarchical

binning algorithm to perform signal propagation instead of scanning through all the radios.

As expected, SWANS-hier scales linearly with the number of nodes.
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The memory footprint results are plotted in Figure 10 on log-log scale. JiST is more efficient

than GloMoSim and ns2 by almost an order and two orders of magnitude, respectively. This

allows SWANS to simulate much larger networks. The memory overhead of hierarchical binning

is asymptotically negligible. As a point of reference, regularly published results of a few hundred

wireless nodes occupy more than 100 MB, and simulation researchers have scaled ns2 to around

1,500 non-wireless nodes using a 1 GB process [14, 36].

Next, we tested SWANS with some very large networks. We ran the same simulations on

dual-processor 2.2GHz Intel Xeon machines (though only one processor was used) with 2GB

of RAM running Windows 2003. The results are plotted in Figure 11(a) on a log-log scale. We

show SWANS both with the näıve propagation algorithm and with hierarchical binning, and

we observe linear behavior for the latter in all simulations up to networks of one million nodes.

The 106 node simulation consumed just less than 1GB of memory on initial configuration,

ran with an average footprint of 1.2GB (fluctuating due to delayed garbage collection), and

completed within 5 1
2 hours. This exceeds previous ns2 and GloMoSim results by two orders of

magnitude, using only commodity hardware.

Finally, we also provide simulation performance metrics for a simulation of the Zone Routing

Protocol (ZRP), a more complex and realistic wireless network protocol. ZRP requires some

routing table storage at each node, which increases the per node memory requirements, and

also performs considerably more network communication to determine routes. Figure 11(b)

shows that we were able to simulation half a million node within five hours, and shows linear

increases in both time and space relative to the network size.

5.2 Event throughput

Having presented macro-benchmark results, we now evaluate JiST event processing throughput

and memory consumption for both simulation entities and events. High event throughput is

essential for scalable discrete event simulation. Thus, in the following micro-benchmark, we

measured the performance of each of the simulation engines in performing a tight simulation

event loop. We began the simulations at time zero, with an event scheduled to do nothing

but schedule another identical event in the subsequent simulation time step. We ran each

simulation for n simulation time quanta, over a wide range of n and measured the actual

time elapsed. Note that, in performing these no-op events, we eliminate any variation due

to application-specific processing and are able to observe just the overhead of the underlying
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Figure 12. JiST has higher event throughput and comes within 30% of the reference lower bound
program. The kink in the JiST curve in the first fraction of a second of simulation is evidence of JIT

compilation and optimization at work.

event processing.

Equivalent and efficient benchmark programs were written in each of the systems. We

briefly describe how each of these equivalent programs was implemented within each system.

The JiST program looks much like the “hello world” program presented earlier. The Parsec

program sends null messages among native Parsec entities using the special send and

receive statements. The GloMoSim program considers the overhead of the node aggregation

mechanism built over Parsec. It is implemented as an application component that sends

messages to itself. Both the Parsec and GloMoSim tests are compiled using pcc -O3, the

most optimized Parsec compiler setting. ns2 utilizes a split object model, allowing method

invocations from either C or Tcl. The majority of the performance critical code, such as

packet handling, is written in C, leaving mostly configuration operations for Tcl. However,

there remain some important components, such as node mobility, that depend on Tcl along the

critical path. Consequently, we ran two tests: the ns2-C and ns2-Tcl tests correspond to events

scheduled from either of the languages. ns2 simulation performance lies somewhere between

these two widely divergent values, dependent on how frequently each language is employed

during a given simulation. Finally, we developed a reference test to obtain a lower bound on

the computation. It is a program, written in C and compiled with gcc -O3, that merely inserts
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5× 106 events time (sec) vs. reference vs. JiST
reference 0.738 1.00x 0.76x
JiST 0.970 1.31x 1.00x
Parsec 1.907 2.59x 1.97x
ns2-C 3.260 4.42x 3.36x
GloMoSim 9.539 12.93x 9.84x
ns2-Tcl 76.558 103.81x 78.97x

memory entity event
JiST 36 B 36 B
GloMoSim 36 B 64 B
ns2 544 B 40 B*
Parsec 28536 B 64 B

(a) (b)

Table 3. (a) Time to perform 5 million events, normalized against both the baseline and JiST. (b) Per
entity and per event memory overhead – i.e., without including memory for any simulation data.

and removes elements from an efficient implementation of an array-based priority queue.

The results are plotted in Figure 12, as log-log and linear scale plots. As expected, all the

simulations run in time linear with respect to the number of events, n. A counter-intuitive

result is that JiST out-performs all the other systems, including the compiled ones. It also

comes within 30% of the reference measure of the computational lower bound, even though it

is written in Java. This achievement is due to the impressive JIT dynamic compilation and

optimization capabilities of the modern Java runtime. The effect of the dynamic optimizations

can actually be seen as a kink in the JiST curve during the first fraction of a second of

simulation. To confirm this, we warmed the JiST test with 106 events (or, for two tenths of a

second) and observed that the kink disappears. The linear-scale plot shows that the time spent

on dynamic optimizations is negligible. Table 3(a) shows the time taken to perform 5 million

events in each of the measured simulation systems and also those figures normalized against

both the reference program and JiST performance. JiST is twice as fast as both Parsec and

ns2-C. GloMoSim and ns2-Tcl are one and two orders of magnitude slower, respectively.

5.3 Memory utilization

Another important resource that may limit scalability is memory. In many simulations, memory

is the critical scalability-limiting factor, since it establishes an upper bound on the size of the

simulated model. We thus measured the memory consumed by simulation entities and by

queued simulation events in each of the systems. Measuring the memory usage of entities

involves the allocation of n empty entities and observing the size of the operating system

process over a wide range of n. Similarly, we queue a large number of events and observe
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Figure 13. JiST allocates entities efficiently: comparable to GloMoSim at 36 bytes per entity, and over
an order of magnitude less that Parsec or ns2. JiST allocates events efficiently: comparable to ns2
(in C) at 36 bytes per queued event and half the size of events in Parsec and GloMoSim. (*) Events
scheduled in ns2 via Tcl will allocate a split object and thereby incur the same memory overhead.

their memory requirements. In the case of Java, we invoke a garbage collection sweep before

requesting an internal memory count. Note also that this benchmark, as before, measures the

memory overhead imposed by the simulation system. The entities and events are empty: they

do not carry any application data.

The entity and event memory results are plotted on log-log scales in Figure 13. The base

memory footprint of each of the systems is less than 10 MB. Asymptotically, the process

footprint increases linearly with the number of entities or events, as expected. (a) – JiST

performs well with respect to memory requirements for simulation entities. It performs

comparably with GloMoSim, which uses node aggregation specifically to reduce Parsec’s

memory consumption. A GloMoSim “entity” is merely a heap-allocated object containing an

aggregation identifier and an event-scheduling priority queue. In contrast, each Parsec entity

contains its own program counter and logical process stack†. In ns2, we allocate the smallest

split object possible, an instance of TclObject, responsible for binding values across the C

†Minimum stack size allowed by Parsec is 20 KB.
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and Tcl memory spaces. JiST provides the same dynamic configuration capability without

requiring the memory overhead of split objects (see section 3.2). (b) – JiST also performs well

with respect to event memory requirements. Though they store slightly different data, the

C-based ns2 event objects are approximately the same size. On the other hand, Tcl-based ns2

events require the allocation of a new split object per event, thus incurring the larger memory

overhead above. Parsec events require twice the memory of JiST events. Presumably,‡ Parsec

uses some additional space in the event structure for its event scheduling algorithm.

The memory requirements per entity and per event in each of the systems are tabulated in

Table 3(b). Note that these figures do not include the fixed memory base for the process nor

the actual simulation data, thus showing the overhead imposed by each approach. Note also

that adding simulation data would doubly affect ns2, since it stores data in both the Tcl and

C memory spaces. Moreover, Tcl encodes this data internally as strings.

5.4 Performance summary

Having evaluated the computational and memory performance of JiST against ns2, GloMoSim

and Parsec, we found that JiST out-performs these systems in both time and space. This section

summarizes the important design decisions in each of the systems that bear most significantly

on these performance results.

Parsec runs very quickly and there are a number of reasons for this. It is compiled, not

interpreted, and uses a modified gcc compiler to produce highly optimized binaries. It also

uses non-preemptive logical processes to avoid system switching overhead: a Parsec logical

context switch is implemented efficiently using only a setjmp and a stack pointer update, like

a user-level thread switch. The process-oriented model, however, exacts a very high memory

cost per entity, since each entity must store a program counter and its stack.

The GloMoSim design compensates for the high per entity overhead of Parsec by aggregating

multiple node states into a single entity and inserting an level of indirection in the message

dispatch path. While this reduces the number of entities in the system, the indirection

comes with a performance penalty. It also eliminates the transparency and many of the

advantages inherent to a language-based approach. For example, the aggregation of state

‡Could not be validated, since source code was not available.
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renders speculative execution techniques impractical.

ns2 is a sequential engine, so message queuing and dispatch are efficient. However, ns2

employs a split object model across C and Tcl to facilitate dynamic simulation configuration.

This not only forces a specific coding pattern, it also comes at a performance cost of replicating

data between the two memory spaces. More importantly, it exacts a high memory overhead.

The ns2 code written in C still runs fast, but the Tcl-based functionality is almost two orders

of magnitude slower. Additionally, both ns2 and GloMoSim suffer performance loss from their

approaches to simulation configuration that eliminates opportunities for static optimizations,

as discussed in section 3.2.

JiST uses a concurrent object model of execution and thus does not require node aggregation.

Since entities are objects all within the same heap, as opposed to isolated processes, the

memory footprint is small. There is also no context switching overhead on a per event

basis and dynamic Java byte-code compilation and optimization result in high computational

throughput. Dynamic optimizations can even inline simulation code into the language-based

kernel. Since Java is a dynamic language, JiST does not require a split object model for

configuration. Instead, we can use reflection to directly observe or modify the same objects

used to run the simulation. This both eliminates the performance gap and the additional

memory requirements.

6 Design enhancements

Having introduced and evaluated the fundamental JiST system as well as some optimizations

to the model, we now discuss various extensions that simplify development and highlight the

inherent flexibility of rewriting. We introduce concepts such as blocking events and simulation

time concurrency. In the interests of brevity, we omit the discussion of simpler JiST features

that are similar to those already commonly found in existing simulation languages, such as

statistics gathering and simulation logging, for example.

The ease with which all of these enhancements have been integrated into the basic design

underscores the flexibility of the JiST approach and it suggests that JiST is a compelling vehicle

for ongoing simulation research. Recent ideas in the simulation literature, such as using reverse

computation [11] in optimistic simulation engines and stack-free process-oriented simulation,

could readily be implemented within the JiST rewriter.
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type safety - source and target of event statically checked by compiler
event typing - not required; events automatically type-cast as they are dequeued

event structures - not required; event parameters automatically marshalled
debugging - event dispatch location and entity state available
execution - transparently allows for parallel, speculative, and distributed execution

Table 4. Benefits of encoding simulation events as entity method invocations.

6.1 Tight event coupling

The most obvious consequence of the rewriter transformation is that simulation events may

be encoded as method invocations, which reduces the amount of simulation code required and

improves its clarity without affecting runtime performance. These benefits are summarized

in Table 4. The first benefit of this encoding is type-safety, which eliminates a common

source of error: the source and target of an event are statically type-checked by the Java

compiler. Secondly, the event type information is also managed automatically at runtime,

which completely eliminates the many event type constants and associated event type-cast

code that are otherwise required. A third benefit is that marshalling of event parameters

into the implicit event structures is performed automatically. In contrast, simulators written

against event-driven libraries often require a large number of explicit event structures and

code to simply pack and unpack parameters from these structures. Finally, debugging event-

driven simulators can be onerous, because simulation events arrive at target entities from the

simulation queue without any context. Thus, it can be difficult to determine the cause of a

faulty or unexpected incoming event. In JiST, an event can automatically carry its context

information: the point of dispatch (with line numbers, if source information is available), as

well as the state of the source entity. These contexts can then be chained to form an event

causality trace, the equivalent of a stack trace. For performance reasons, this information is

collected only in JiST’s debug mode, but no changes to the application code are required.

The tight coupling of event dispatch and delivery in the form of a method invocation also

has important performance implications. Tight event-loops, which can be determined only at

runtime, can be dynamically optimized and inlined even across the kernel boundary between

JiST and the running simulation, as shown by the Jalapeño project [37]. For example, the

dynamic Java compiler may decide to inline portions of the kernel event queuing code into
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hot spots within the simulation code that frequently enqueue events. Or, conversely, small and

frequently executed simulation event handlers may be inlined into the kernel event loop. The

tight coupling also abstracts the simulation event queue, which will, in the future, allow the

JiST kernel to transparently execute the simulation more efficiently – in parallel, distributed,

and even optimistically – without requiring any modifications to the simulation code, as

discussed in section 7.1.

6.2 Blocking invocation semantics

We have shown how JiST conveniently models events as invocations on entities. This facility

provides all the functionality of an explicit event queue, which is all that many existing

simulators use. However, it remains cumbersome to model simulation processes, since they

must be written as event-driven state machines. While many entities, such as network protocols

or routing algorithms, naturally take this event-oriented form, other kinds of entities do not.

For example, an entity that models a file-transfer is more readily encoded as a process than as

a sequence of events. Specifically, one would rather use a tight loop around a blocking send

routine than dispatch send begin events to some transport entity, which will eventually

dispatch matching send complete events in return. Many existing applications make use of

system calls with blocking semantics. We would like to be able to run such applications within

our simulator. To that end, we introduce blocking invocation semantics and simulation time

continuations.

In order to invoke an entity method with continuation, we merely declare that a given entity

method is a blocking event. Blocking and non-blocking methods can co-exist within the same

entity. Syntactically, an entity method is blocking, if and only if it declares that it throws a

Continuation exception. This exception is not actually thrown and need not be explicitly

handled by a caller. It acts merely as a tag to the rewriter. The semantics of a blocking entity

method invocation, as shown in Figure 14, are a natural extension atop the existing event-

based invocation. The kernel first saves the call-stack of the calling entity and attaches it to

the outgoing event. When the call event is complete, the kernel notices that the event has

caller information, so the kernel dispatches a callback event to the caller, with its continuation

information. Thus, when the callback event is eventually dequeued, the state is restored and

the execution continues right after the point of the blocking entity method invocation. In the

meantime, however, local simulation time will have progressed to the simulation time at which
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Figure 14. The addition of blocking methods allows simulation developers to regain the simplicity of
process-oriented development. When a blocking entity method is invoked, the continuation state of
the current event is saved and attached to a call event. When this call event is complete, the kernel
schedules a callback event to the caller. The continuation is restored and the caller continues its

processing from where it left off, albeit at a later simulation time.

the calling event was completed, and other events may have been processed against the entity.

This approach allows blocking and non-blocking entity methods to co-exist, which allows

a combination of event-oriented and process-oriented simulation. Methods can arbitrarily be

tagged as blocking, and we extend the basic event structures to store the call and callback

information. However, there is no notion of an explicit process, nor even a logical one. Unlike

process-oriented simulation runtimes, which must pre-allocate fixed-size stacks for each real

or logical process, the JiST stacks are variably-sized and allocated on demand. The stacks are

allocated only at the point of the blocking entity invocation, and they exist on the heap along

with the event structure that contains it. This reduces memory consumption. Moreover, our

model is actually akin to threading, in that multiple continuations can exist simultaneously

for a single entity. Finally, there is no system context-switch required. The concurrency occurs

only in simulation time, and the underlying events may be executed sequentially within a

single thread of control.

Unfortunately, saving and restoring the Java call-stack for continuation is not a trivial

task [38]. The fundamental difficulty arises from the fact that stack manipulations are not
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Figure 15. The JiST event loop also functions as a continuation trampoline. It saves the continuation
state on a blocking entity method invocation and restores it upon receiving the callback. Due to Java

constraints, the stack must be manually unwound and preserved.

supported at either the language, library, or byte-code level. Our solution draws and improves

on the ideas in the JavaGoX [39] and the PicoThreads [40] projects, which also save the

Java stack for different reasons. Our design eliminates the use of exceptions to carry state

information. This is considerably more efficient for our simulation needs, since Java exceptions

are expensive. Our approach also eliminates the need to modify method signatures. This fact

is significant, since it allows our continuation capturing mechanism to function even across the

standard Java libraries. In turn, this enables us, for example, to run standard, unmodified Java

network applications within network simulators written atop JiST. A network socket operation

is rewritten into a blocking method invocation, so that the application is “frozen” until the

network packet is delivered by the simulator.

The rewriter incrementally computes the application call-graph to determine which methods

of the simulation code need to be transformed, performs an intra-procedural data-flow analysis

to determine the possible execution frame types, and inserts both saving and restoration code

around each program continuation location, converting the original simulation program into

a continuation-passing style (CPS). The saving code marshals the stack and locals into a

custom-generated frame object, containing all the correct field types, and pushes it onto the

event continuation stack via the kernel. The restoration code does the opposite and then jumps

right back to the point of the blocking invocation.

The kernel functions as the continuation trampoline, as shown in Figure 15. When the kernel

receives a request to perform a call with continuation, it registers the call information, switches
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Figure 16. A blocking CSP channel is built using continuations. SWANS uses JiST channels to create
simulated sockets with blocking semantics. Other simulation time synchronization primitives can

similarly be constructed.

to save mode, and returns to the caller. The stack then unwinds, and eventually returns to the

event loop, at which point the call event is dispatched with the continuation attached. When

the call event is received, it is processed, and a callback event is dispatched in return with

both the continuation and the result attached. Upon receiving this callback event, the kernel

switches to restore mode and invokes the appropriate method. The stack then winds up to its

prior state, and the kernel receives a request for a continuation call yet again. This time, the

kernel simply returns the result of the call event and allows the event processing to continue

from where it left off.

The invocation time of a blocking event with this implementation is proportional to the

length of the stack. The time to perform a blocking invocation with a short call stack is only

around 2-3 times the dispatch time of a regular event. Thus, continuations present a viable,

efficient way to reclaim process-oriented simulation functionality within an event-oriented

simulation framework. Extensions to the Java libraries and virtual machine that expose the

stack in a type-safe manner, as presented in [41], could eliminate this performance gap between

non-blocking and blocking events.

6.3 Simulation time concurrency

Using only basic simulation events and continuations, we have built a cooperative simulation

time threading package within JiST. It can be transparently used as non-pre-emptive
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replacement for the Java Thread class within existing Java applications to be simulated. Pre-

emptive threading can also be supported, if necessary, by inserting simulation time context

switch calls at appropriate code locations during the rewriting phase. However, since we are

optimizing for simulation throughput, cooperative concurrency is preferred.

Given simulation time concurrency, one may wish to recreate various simulation time

synchronization primitives. As an example, we have constructed the channel primitive from

Hoare’s Communicating Sequential Processes (CSP) language [42]. It has been shown that

other synchronization primitives, such as locks, semaphores, barriers, monitors, and FIFOs,

can be constructed using such channels. Or, these primitives can be implemented directly

within the kernel. As shown in Figure 16, the CSP channel blocks on the first receive (or send)

call and stores the continuation. When the matching send (or receive) arrives, then the data

item is transferred across the channel and control returns to both callers. In other words, we

schedule two simulation events with the appropriate continuations. A JiST channel is created

via the createChannel system call. It supports both CSP semantics as well as non-blocking

sends and receives. JiST channels are used, for example, within the SWANS implementation of

TCP sockets in order to block a Java application when it calls receive and to send information

back to the application when a packet arrives. In this case, the channel mimics the traditional

boundary between the user-level network application and the in-kernel network stack.

7 Discussion

In this section, we turn to a discussion of two directions for possible future work. The first is to

extend JiST into a parallel and distributed simulation platform. JiST was explicitly designed

with this in mind. Second, we discuss the choice of Java as a platform for JiST and possible

improvements to the virtual machine to better support simulation. We also discuss language

alternatives and highlight some advantages and disadvantages of the Java choice.

7.1 Parallel, optimistic and distributed simulation execution

The JiST system, as described thus far, is capable of executing simulations sequentially and

it does so with performance that exceeds existing, highly optimized simulation engines. JiST

also supports inter-simulation concurrency. Any number of JiST engines can be started on

separate machines, each capable of accepting simulation jobs from a central JiST job queue,

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–7

Prepared using speauth.cls



AN EFFICIENT APPROACH TO SIMULATION USING VIRTUAL MACHINES 39

where JiST clients post simulations. As each job is processed on the next available server, the

corresponding client will service remote class loading requests and receive redirected output

and simulation logs. This näıve approach to parallelism has proven sufficient for our needs,

since JiST can already model very large networks on individual machines, and it provides us

with perfect speed-up for batches of simulations. JiST, however, was explicitly designed to

allow concurrent, distributed, and speculative execution, or intra-simulation parallelism. By

modifying the simulation time kernel, unmodified simulation programs can be executed over

a more powerful computing base. These kernels have not been implemented yet. Below we

describe the mechanisms that are already in place for such extensions.

Parallel execution in JiST can be achieved by dividing the simulation time kernel into

multiple threads of execution, called Controllers, which already exist in the single-threaded

implementation. Each controller owns and processes the events of a subset of the entities in

the system, and controllers synchronize with one another in order to bound their, otherwise,

independent forward progress. JiST can further be extended to transparently support entity

rollback, so that simulation time synchronization protocols among the various controllers need

not be conservative. State checkpoints can be automatically taken through object cloning.

Alternatively, efficient undo operators can be statically generated through code inspection in

some cases or possibly provided by the developer in other cases for added performance. In

any case, entity state changes can always be dynamically intercepted either at the level of

complete entities, individual objects, or even individual fields within an object. These state

changes can be logged for possible undo, allowing the JiST kernel to transparently perform

speculative execution of the simulation.

Controllers may also be distributed in order to run simulations across a cluster of

machines. Conveniently, Java support for remote method invocation (or more efficient

drop-in alternatives such as KaRMI [43]) combined with automatic object serialization

provides location transparency among the distributed controllers. Even beyond this, the

existing separator objects (which replace entity references during rewriting) allow entities to

dynamically be moved among controllers in the system, for balancing load or for minimizing

invocation latency and network bandwidth, while the simulation is running. The automatic

insertion of separators between entities provides the simulation developer with a convenient

single system image abstraction of the cluster.
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Figure 17. Manually boxing Java primitives for reflection-based invocation and unrolling the Java
stack for blocking event continuations are unnecessary Java-related overheads.

7.2 Language alternatives

Given that JiST is a Java-based system, it is natural to question whether Java is an appropriate

choice and whether similar benefits could not be attained using other languages. Java has a

number of advantages. It is a standard, widely deployed language, not specific to writing

simulations. Consequently, the Java platform boasts a large number of optimized virtual

machine implementations across many hardware and software configurations, as well as a large

number of compilers and languages [44] that target this platform. Java is an object-oriented

language and it supports reflection, serialization, and cloning, which facilitates reasoning

about the simulation state at runtime. The intermediate byte-code representation conveniently

facilitates instrumentation of the code to support the simulation time semantics. Type-safety

and garbage collection simplify writing simulations by addressing common sources of error.

Some of these properties exist in other languages as well, and they would be suitable

candidates for a JiST-like transformation. Based on our knowledge of existing languages and

on our experience implementing JiST, the most suitable candidates include Smalltalk, C#,

Ruby, and Python.
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Java also has a number of disadvantages that are worth noting, because they adversely

affect the performance of JiST. Java primitive types require special handling. They need to be

manually “boxed” into their object counterparts for the reflection-based invocation that occurs

in the performance-critical event-loop, thus incurring a relatively expensive object instantiation

and eventual garbage collection. Instead, the conversion from primitive to object and back

should be performed internally by the JVM in an efficient manner, as in C#. Secondly, the

Java virtual machine does not support explicit tail call instructions, method calls that can be

performed without preserving the stack frame of the caller, since the caller merely returns the

result of the callee. These are a common occurrence within an event-based system and adding

a byte-code instruction to assist the optimizer could ensure that the proper stack discipline

is used. Finally, Java completely hides the execution stack from the programmer. There are

many applications that could benefit even from some restricted form of stack access, even as an

immutable object. It has been shown that modified virtual machines can support zero-overhead

stack access and switching [41]. In JiST, such functionality would eliminate the performance

gap between regular and blocking simulation events.

Figure 17 shows the impact of primitive boxing and stack unrolling on various JiST event

types. Null events are fastest, since they do not require the instantiation of an argument array.

Events with object parameters (string) are only slightly faster than events with primitive

parameters (int and double). Proxied events have equivalent performance to regular events,

even though they add an additional method invocation. However, this additional stack frame

hurts performance in the case of proxied-blocking events, which must disassemble the stack

manually, frame by frame. Note also that the proxying method is simply a wrapper, so it is

not touched by the CPS transformation. The JVM should certainly implement it using a tail

call, if not entirely inline the method.

8 Related work

The JiST and SWANS work spans three domains of research: simulation, networking, and

languages. We describe the relevant related work in each of these areas. The interested reader

is also encouraged to refer to the doctoral dissertation on this topic [45].
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8.1 Simulator construction

Simulation research has a rich history dating back to the late 60s, when it prompted the

development of Simula [9]. Many other simulation languages, libraries, and systems have since

been designed, focusing on performance, distribution, concurrency, speculative execution, and

new simulation application domains.

The first and also most popular approach to building simulators involves the use of simulation

libraries. A frequently stressed benefit of this approach is that such libraries are usable within

existing general-purpose languages, most often within C or C++. Libraries, such as OLPS

[46], Speedes [47], and Yansl [48], provide support for parallel event-driven simulation. SimKit

[49] is a simulation class library that supports logical processes. The Compose [8] simulation

library allows individual concurrent objects to dynamically adapt their execution modes among

a number of conservative and optimistic synchronization protocols.

With the widespread adoption of Java, there has also been research interest in using this

language for simulation [50]. SimJava [51] and Silk [52] are two early Java-based libraries for

process-oriented discrete-event simulation. However, both of these solutions utilize native Java

threads within each process or entity to capture simulation time concurrency and therefore do

not scale. The IDES library [53] is more reasonably designed, but the project was focussed on

using Java for simplifying distributed simulation and did not address sequential performance.

Likewise, the Ptolemy II [54] system provides excellent modeling capabilities, but utilizes

a sophisticated component framework that imposes overheads in the critical event dispatch

path. Finally, the Dartmouth Scalable Simulation Framework (DaSSF) includes hooks to allow

for extensions and event handlers written in Java. These projects combine the features of

prior simulation library initiatives with the benefits of the Java environment, such as garbage

collection, type safety, and portability.

However, regardless of the language chosen, the primary disadvantage of library-based

approaches is that the simulation program becomes more complex and littered with simulation

library calls and callbacks. This level of detail not only obscures simulation correctness, but

also impedes possible high-level compiler optimizations and program transformations. In other

words, library-based approaches lack transparency. Noting the advantages of writing simulators

in standard language environments, JiST was designed to work within Java. However, JiST

provides its simulation functionality using a language-based approach, rather than via a library.
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A second approach to building simulators involves the use of simulation-specific languages,

which are often closely related to popular existing languages and contain extensions for

events, synchronization, and other simulation time primitives. For instance, Csim [55], Yaddes

(Parsimony) [56], Maisie [57], and Parsec [10] are all derivatives of either C or C++ that

support process-oriented simulation. The resulting executables can be run using a variety of

kernels ranging from the sequential to the optimistically parallel.

Simulation language research has also focused on applying object-oriented concepts to

simulation-specific problems. Projects, such as Sim++ [58], Pool [59], ModSim II [60],

and Rosette [61], have investigated various object-oriented possibilities for checkpointing,

concurrency, synchronization, and distribution in the context of simulation. For example, the

Moose language [62], a derivative of Modula-2, uses inheritance to specialize implementations

of simulation objects with specific knowledge and simulation algorithms to improve efficiency.

Languages, such as Act++ [63] and others, structure the concurrency of object-oriented

simulations using actors, as opposed to the traditional concurrent object or process-oriented

execution models. JiST inherits the object-oriented properties of the Java language and extends

the Java object model and execution semantics to support both concurrent object and process-

oriented simulation.

Other simulation languages, such as Apostle [64] and TeD [65] have taken a more domain-

specific language approach. TeD, for example, is an object-oriented language developed mainly

for modeling telecommunications network elements and protocols. OOCSMP [66] is another

high-level simulation language designed for continuous models expressed as partial differential

equations, and is compiled down to Java for efficient execution. While JiST is currently

a general-purpose discrete-event simulation platform, the design could certainly subsume

domain-specific extensions without loss of generality. In fact, the inherent flexibility of byte-

code level rewriter would facilitate this work.

Finally, researchers have built simulations using special operating system kernels that

can transparently run processes in virtual time. The landmark work on this topic is the

TimeWarp OS [6], and projects such as GTW [67], Warped [68], Parasol [69], and others, have

investigated important dynamic optimizations within this model. JiST provides protection at

finer granularity by using safe language techniques and eliminates the runtime overhead of

process-level isolation.
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In summary, JiST merges simulation ideas from both the systems and languages camps by

leveraging virtual machines as a simulation platform. To the best of our knowledge, JiST is

the first system to integrate simulation execution semantics directly into the execution model

of a standard language environment.

8.2 Network simulation

The networking community depends heavily on simulation to validate its research. The ns2

[19] network simulator has had a long history with the community and is widely trusted. It

was therefore extended to support mobility and wireless protocols [70]. Though it is primarily

used sequentially in the community, researchers have extended ns2 to PDNS [14], allowing

for conservative parallel execution. GloMoSim [30] is a newer simulator written in Parsec [10]

that has recently gained popularity within the wireless ad hoc networking community. The

sequential version of GloMoSim is freely available. The conservatively parallel version has

been commercialized as QualNet [33]. Another notable and commercially-supported network

simulator is OPNet. Recently, the Dartmouth Scalable Simulation Framework (DaSSF)

has also been extended with SWAN§ [15] to support distributed wireless ad hoc network

simulations. Likewise, TeD [65] has been extended with WiPPET [16], though it is focussed

on cellular networks. SWiMNet [17] is another parallel wireless simulator focussed on cellular

networks.

In this paper, we have described JiST running wireless network simulations of one million

nodes on a single commodity machine with a 2.2GHz processor and 2GB of RAM. To the best

of our knowledge, this exceeds the performance of every existing sequential ad hoc wireless

network simulator. Based on the literature, this scale of network is beyond the reach of many

parallel simulators, even when using more hardware. Clearly, memory consumption depends

on what is being simulated, not just on the number of nodes in the network. For example, in

our simulation the state of the entire stack of each node consumes less than 1K of memory,

but this will clearly increase if the TCP component is used. Likewise, simulation performance

depends on network traffic, node density and many other parameters. Therefore, merely as

a point of reference, [29] summarizes the state of the art in 2002 as follows: using either

§Not to be confused with our SWANS
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expensive multi-processor machines or clusters of commodity machines connected with fast

switches, DaSSF, PDNS, and WARPED can simulate networks of around 100,000 nodes, while

TeD and GloMoSim have shown results with 10,000 node networks. More recently, the PDNS

website [71] states that “PDNS has been tested on as many as 136 processors simulating a

600,000+ node network”, but without further details. This same group continues to push the

envelope of parallel and distributed simulation further still [72], with GTNetS [73].

Various projects, including EmuLab [74], ModelNet [75] and PlanetLab [76] provide

alternatives to simulation by providing emulation and execution test-beds. JiST simulation is

complementary to these approaches. However, the ability to efficiently run standard network

applications over simulated networks within JiST blurs the distinction between simulation and

emulation.

Finally, J-Sim (JavaSim) [77] is a relatively new and highly-optimized sequential network

simulator written in Java, using a library that supports the construction of simulations from

independent Components with Ports that are connected using Wires. The system is intelligently

designed to reduce threading overhead, synchronization costs, and message copying during

event dispatch, resulting in performance only just slightly slower than JiST. However, the

memory overhead for the various JavaSim infrastructure objects, results in a memory footprint

that is larger than JiST by an order of magnitude for network models of equal size.

8.3 Languages and Java-related

Java, because of its popularity, has become the focus of much recent research. The Java

virtual machine has not only undergone extensive performance work, it has also become

the compilation target of many other languages [44]. Projects such as JKernel [21] have

investigated the advantages of bringing traditional systems ideas of process isolation and

resource accounting into the context of a safe language runtime. The Jalapenõ project [37]

has also demonstrated performance advantages of a language-based kernel. JiST makes similar

claims in the context of simulation.

A vast number of projects have used Java byte-code analysis and rewriting techniques for

a variety of purposes. The Byte-Code Engineering Library [78], Soot [79], and other libraries

considerably simplify this task. AspectJ [22] exposes a rewriting functionality directly within

the language. Others, including cJVM [80] and Jessica [81], have used Java byte-code rewriting

techniques to provide an abstraction of a single-system image abstraction over a cluster of
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machines. The MagnetOS project [82] has extended this idea to support transparent code

migration in the context of an ad hoc network operating system [83]. The JavaParty [84] and

the xDU [85] projects have looked at mechanisms to facilitate Java application partitioning and

distribution. The JavaGoX [39] and PicoThreads [40] projects among others, have considered

the problem of efficiently capturing stack information without modifying the JVM, as proposed

in [41]. KaRMI [43] improves RPC performance using a fast drop-in replacement for Java RMI

that uses static byte-code analysis to generate specialized marshalling routines. Finally, [23]

and [86] have performed static analysis to determine the mutability of Java objects for a variety

of optimizations. JiST brings these and other ideas to bear on the problem of high-performance

simulation.

9 Conclusion

In this paper, we have proposed a new approach to simulator construction that leverages virtual

machines. In particular, we have introduced JiST, a new Java-based simulation framework that

executes discrete event simulations both efficiently and transparently by embedding simulation

time semantics directly into the Java execution model. We have outlined our rationale for this

new design and contrasted it with the existing language-based and systems-based approaches to

building simulators. We then evaluated the system, showing that it performs well both in terms

of time and memory consumption. We have constructed SWANS, a wireless ad hoc network

simulator, atop JiST, as a validation of our approach and have demonstrated that SWANS can

scale to wireless network simulations of a million nodes on a single commodity machine. Finally,

we have explored the inherent flexibility of the JiST approach by introducing various additional

concepts into the JiST model, such as process-oriented simulation, simulation time concurrency

primitives, and the ability to run existing and unmodified Java network applications over

simulated SWANS networks. We hope that the performance of JiST, its ability to merge

ideas from the systems-oriented and the language-oriented approaches to simulation, and the

popularity of the Java language will facilitate its broader adoption within the simulation

community.
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