JIST - Java in Simulation Time

An efficient, unifying approach
to simulation using virtual machines

Rimon Barr, Zygmunt Haas, Robbert van Renesse

rimon@acm.org haas@ece.cornell.edu rvr@cs.cornell.edu

Cornell University, USA

8 September 2004

http://jist.ece.cornell.edu/

motivation: simulation

Microprocessor Price Trends
Price Par MIPS

e cost per MIPS declining siaos
 e.g. Pentium Xeon: .
e ~10,000 MIPS @ ~$200 g AR

« emphasis on computation : ..

e vs. analytical methods

e vs. empirical methods

e simulators are needed il R ot
e e.g., wireless networks
o published ad hoc network simulations

e lack network size - ~500 nodes; or

e« compromise detail - packet level; or

e curtail duration - few minutes; or

 are of sparse density - <10/km?

i.e. limited simulation scalability [Riley02]

Virtual machine-based simulation

what is a simulation?

o unstructured simulation: computers compute
o time structured: event-oriented vs. process-oriented

o discrete event simulator is a program that:
* encodes the simulation model
o stores the state of the simulated worid
o performs events at discrete simulation times
e loops through a temporally ordered event queue
e works through simulation time as quickly as possible

e desirable properties of a simulator:

e correctness - valid simulation results
o efficiency - performance in terms of throughput and memory
e transparency - separate correctness from efficiency:
- write “simple” program in a standard language
- provide implicit optimization, concurrency,
distribution, portability, etc.

Virtual machine-based simulation

how do we build simulators?

systems

e simulation kernels
e control scheduling, IPC, clock
e processes run in virtual time
e e.g. TimeWarp OS [Jefferson87],
Warped [Martin96]

© transparency < efficiency

e simulation libraries
 move functionality to user-space

for performance; monolithic prog.

e usually event-oriented

¢ e.g. Yansl [Joines94],
Compose [Martin95], NS2 [McCanne95]

% transparency < efficiency

languages

e generic simulation languages

* introduce entities, messages and
simulation time semantics

o event and state constraints allow
optimization
e both event and process oriented

e e.g. Simula [Dpahi66], Parsec
[Bagrodia98] / GIoMoSim [zeng98]

 application-specific languages

e e.g. Apostle [Bruce97],
TeD [Perumalla98]

<& transparency < efficiency

© % new language

virtual machines

Virtual machine-based simulation

virtual machine-based simulation

e Proposal:

A virtual machine-based simulator benefits from the advantages
of both the traditional systems and language-based designs by

leveraging standard compilers and language runtimes as well as
ensuring efficient simulation execution through transparent
cross-cutting program transformations and optimizations.

e JiST —Java in Simulation Time
e converts a virtual machine into a simulation platform
 no new language, no new library, no new runtime

e merges modern language and simulation semantics
» combines systems-based and languages-based approaches
e result: virtual machine-based simulation

kernel library language JiST
transparent ++ ++ ++
efficient + + ++
standard ++ ++ ++

Virtual machine-based simulation

system architecture

=

Compile simulation with standard Java compiler

2. Run simulation within JiST (within Java); simulation classes are
dynamically rewritten to introduce simulation time semantics:

o extend the Java object model and execution model

e instructions take zero (simulation) time

» time explicitly advanced by the program: sl eep(ti ne)
o progress of time is dependent on program progress

3. Rewritten program interacts with simulation kernel

@ compiler .
. rewriter
(javac)
simulation
kernel

* o 2
CET T 7 virtual
reo ! / o .
: P E: machine
1 |
1

&

- Z
- 7

Jave saurce code

Jave bytecade modified classes

Virtual machine-based simulation

jist object model

e program state contained in objects
o objects contained in entities

o think of an entity as a simulation component
e an entity is any class tagged with the Ent | i y interface

e each entity runs at its own simulation time
e as with objects, entities do not share state
e akin to JKernel [Hawblitzel98] process in spirit, without the threads!

3
¢

object view

simulation state

>o

entity view

v
®
®

. abject

entity |

M

Virtual machine-based simulation

jist execution model

e entity methods are an event interface
e simulation time invocation

 non-blocking; invoked at caller entity time; no continuation
e like co-routines, but scheduled in simulation time
o entity references replaced with separators
o event channels; act as state-time boundary
 demarcate a TimeWarp-like process, but at finer granularity

simulation state

)

¥ o
b.. s

D
'o
T'

>o

"F—-_.-

object view

entity view

. abject ’ separator g

ety

Virtual machine-based simulation

a basic example

e the “hello world” of event simulations

class HelloWwrld inplenents JistAPI.Entity

{
public void hello()

{
Ji st APl . sl eep(1);
hel | o();
Systemout.printin("hello world, " +
"time=" + JistAPl.getTine());

Stack overflow @ello |hello world, tine=1
hello world, tine=2
hello world, tine=3
etc.

Virtual machine-based simulation

jist micro-benchmark: event throughput

Simulation event throughput

100 ¢ 5 —
[> 7 9

: A

- e s

- - -
e s /A/ /’,E]
A~ prd . ,
- - - -
- - R - 5

Simulation event throughput

5 7 T T T T I
/ --- reference
asl -6~ JiST (cold) ||
) / -&- Parsec
/ -¢- ns-C

—_ 7 —_
v | - 5
s v~ 8
2 1- 3
K2 ¥ P @2
o b o o
£ " E
A//,
0.1 - . - rt_eference
e -6~ JiST (cold) |7
— JiST (warm) |[;
-&- Parsec
-0~ GloMoSim
Fr -&- ns-C
‘ -w- ns-Tel
0.01) ey — 0 o
0.1 1 o] 100 0 1 2 3 v 5 6 7 8 9 10
of events (in millions) ".,. “c#‘c')f events (in millions)
'..... ““!‘
...'. “‘I
"*45x1076 events | time (sec) vs. reference vs. JiST
reference 0.74 0.76x
JiST 0.97 1.31x
Parsec 1.91 2.59x 1.97x
ns2-C 3.26 4.42x 3.36x
GloMoSim 9.54 12.93x 9.84x
ns2-Tcl 76.56 103.81x 78.97x

Virtual machine-based simulation

10

jist micro-benchmark: memory overhead

Simulation entity memory overhead Simulation event memory overhead
1000 ¢ L L L L L aaa 1000 T T Ty T T T T T T T T T T T T
e JisT i
r| -8~ Parsec /./
| -¢- GloMoSim o
|| -9 ns2 e
a’
100 - P 5 100 - .
’ﬂm: i /‘Z‘/ -~ ’g’: i
g /-/JZ‘/ P - /v g
a N
P
5 e A s G v]
g _,El"/ e 5 [
oy e ___.-e--‘-e‘-‘-“@"" F
g ¢ ¢ ° g n B---& F--E- =]
o [
E E
1 E = 1 :* 3
-0~ JiST]
G ¢ -8~ Parsec/GloMoSim |
-v- ns2*
0.1 I A | vl I———.| Ll L 0.1 Lol | Lol Ll T E——————yl
0.1 1 10 100 1000 0.1 1 10 100 1000 10000
of entities (in thousands) # of queued events (in thousands)
memory | per entity per event [10K nodes sim.
JiST 36 B 36 B 21 MB
GloMoSim 36 B 64 B 35 MB
ns2 * 544 B 40 B 74 MB
Parsec 28536 B 64 B 2885 MB
Virtual machine-based simulation 11

SWANS

e Scalable Wireless Ad hoc Network Simulator

o similar functionality to ns2 (mccanness;) and GIOMOSIM (zengos;, but...
e runs standard Java network applications over simulated networks

e can simulate networks of 1,000,000 nodes

sequentially, on a single commodity uni-processor
e runs on top of JiST; SWANS is a JiST application
e uses hierarchical binning for efficient propagation
e component-based architecture written in Java

Node

ConstBitRate
(7
Transport

Network Routing
IPvd ZRP
CAREER k- 2 Z £
MAC = = = = =
802.11b
[Radio H Mobility]
NoiseAdd. RandWavyPt.
LY * LY o IY 91
Field Field

FreespaceRaleigh2D
L7

Field

[FreespacePathloss—RaleighFading—2D—Field
7
[FreespaceRaleigh2D

Field
FreespaceRaleigh2D

Virtual machine-based simulation

i1 Ly

App
S
© SWANS
wid
7))
E‘ JIST
§7)
Java
%
7)) —
g & ¢ E
Yy— [&] —)
JiST 29 117 14256 3530
SWANS 85 220 29157 6586
Other 32 80 7204 2525
146 417 50617 12641

12

time

SWANS performance

Time for 15 minute NDP simulation

10h, | ‘ —— 1000 ‘
100}
s
2 1097 3
2
£
1}
z G '
-©- SWANS (scan) | 3 L -©- SWANS (scan) |
-8- GloMoSim] O___G__...@--'@ -8- GloMoSim 1
-$- ns2 i -&- ns2 i
‘ .., O SWANS (hier) e, . LZ©- SWANS(hier)
'$00 1000 10000 100000 o 100 1000 10000 100000
network size (nodes) network size (nodes)
t=15m ns?2 GloMoSim SWANS SWANS-hier
nodes|| time memory| time memory| time memory| time memory
500([7136.3 s 58761 KB 81.6s 5759 KB 535s 700 KBl 43.1s 1101 KB
5000 6191.4 s 27570 KB| 3249.6 s 4887 KB| 433.0s 5284 KB
50000 47717 KB|4377.0 s 49262 KB

Memory for NDP simulation

Virtual machine-based simulation

1e+06

SWANS performance

Virtual machine-based simulation

Time for 2 minute NDP simulation

10h
n
10m E
o i
E i
mf
108;
Om- & SWANS (hier) |.
C ‘ | | -©- SWANS (scan)
1310 102 10°~3 1074 1075 1076
network size (nodes)
t=2m SWANS-hier NDP simulation

nodes

10,000 100,000 1 million [per node

initial memory
avg. memory
time

13 MB 100 MB 1000 MB| 1.0 KB
45 MB 160 MB 1200 MB| 1.2 KB
2m 25 m 55h 20 ms

14

benefits of the jist approach

more than just performance...
o application-oriented benefits

o type safety source and target statically checked

e event types not required (implicit)

e event structures not required (implicit)

e debugging dispatch source location and state available
 language-oriented benefits

e Java standard language, compiler, runtime

e garbage collection cleaner code, memory savings

o reflection script-based simulation configuration

o safety fine grained isolation

e robustness no memory leaks, no crashes
o system-oriented benefits

e IPC no context switch, no serialization, zero-copy

e Java kernel cross-layer optimization

e rewriting no source-code access required,

cross-cutting program transformations and optimizations

e distribution provides a single system image abstraction

e concurrency model supports parallel and speculative execution
 hardware-oriented benefits

e cost COTS hardware and clusters

e portability runs on everything

Virtual machine-based simulation

rewriter flexibility

e simulation time transformation

extend Java object model with entities
extend Java execution model with events
language-based simulation kernel

e extensions to the model

timeless objects: pass-by-reference to avoid copy, saves memory

reflection: scripting, simulation configuration, tracing

tight event coupling: cross-layer optimization, debugging

proxy entities: interface-based entity definition

blocking events: call and callback, CPS transformation, standard applications
simulation time concurrency: Threads, Channels and other synch. primitives
distribution: location independence of entities, single system image abstraction
parallelism: concurrent and speculative execution

orthogonal additions, transformations and optimizations

o platform for simulation research

e.g. reverse computations in optimistic simulation [Carothers99]
e.g. stack-less process oriented simulation [Booth97]

Virtual machine-based simulation

summary

e JiST — Java in Simulation Time

o prototype virtual machine-based simulation platform
e merges systems and language-based approaches

kernel library language JiST
transparent - 1t T+
efficient - + 4+
standard ++ ++ ++

runs SWANS: Scalable Wireless Ad hoc Network Simulator

efficient: both in terms of throughput and memory

flexible: timeless objects, reflection-based scripting,
tight event coupling, proxy entities, continuations and
blocking methods, simulation time concurrency,
distribution, concurrency ... serve as a research platform

Virtual machine-based simulation 17

JIST - Java in Simulation Time

An efficient, unifying approach
to simulation using virtual machines

THANK YOU.

http://jist.ece.cornell.edu/

